www.scichina.com earth.scichina.com

穿凿地球系统的时间隧道

汪品先

同济大学海洋地质国家重点实验室, 上海 200092 E-mail: pxwang@tongji.edu.cn; pxwang@online.sh.cn

收稿日期: 2009-09-04; 接受日期: 2009-09-14 国家重点基础研究发展计划(编号: 2007CB815902)资助

地球系统科学的重要进展在于拓宽了视域,在空间域里向更深、更宏观和更微观的领 摘要 域推进,加深了对圈层相互作用的理解.由于固体与流体地球科学发展的起点在时间尺度上 并不相同、也由于在时间上穿越能力的限制、地球系统科学的发展在时间域里遇到的障碍比 空间域里大. 然而地球系统运行机制的探索, 只有穿越不同的时间尺度才能成功. 本文回顾了 地球系统科学在空间和时间两方面所取得的进展, 讨论了地球过程在时间尺度上的复杂关系, 提出从建立时间序列、改变思想方法和研究计划入手,穿越时间尺度、打通古今界限,穿凿地 球系统时间隧道的建议.

关键词

地球系统 时间 空间 多尺度分析 圈层相互作用

1 引言

目 录

3.2.1 现代过程研究向长时间序列发展 2 地球系统科学在空间域里的拓展 3.2.2 现代过程时间尺度的多样性 2.1 数字化的全球视野 3.2.3 古代过程研究向定量化和"现代化"发展 2.2 向更深的层次推进 3.3 地球过程时间尺度的连续性 2.2.1 地面上下的双向系统 3.3.1 不同时间尺度的叠加 2.2.2 海洋上下的双向系统 3.3.2 不同过程的时间差异 2.2.3 地球表层和深部的双向系统 3.3.3 时间尺度上的拓展与汇合 2.3 向更广阔的空间推进 4 穿越时间尺度的隧道 2.3.1 星球演化阶段的比较 4.1 地球系统科学中的多尺度问题 2.3.2 星球表面特征的比较 4.1.1 地球科学的时空尺度 2.3.3 星球流态圈层的比较 4.1.2 地球科学中的多尺度分析 2.4 向更小的微观世界推进 4.1.3 "人类中心观": 认识地球系统的障碍 2.4.1 纳米地球科学 4.2 古今结合穿凿时间"隧道" 2.4.2 海洋微型生物 4.2.1 跨越尺度的时间序列 2.4.3 微型生物与碳循环 4.2.2 跨越时间尺度的思想方法 3 地球系统科学在时间域里的汇合 4.2.3 跨越时间尺度的研究计划 3.1 地球科学的"古""今"鸿沟 3.2 地球系统时空尺度的连续性 5 结束语

引用格式: Wang P X. Digging a time tunnel through the Earth system (in Chinese). Sci China Ser D-Earth Sci, 2009, 39(10): 1313—1338

1 引言

当人类忙着跨越世纪、庆祝"千禧"的时候,地球 科学却不知不觉地被推上了社会的"风口浪尖". 1985 年发现臭氧洞, 1989年通过蒙特利尔议定书,全球禁 用破坏臭氧洞的人造氯氟烃. 接着,全球性气候变化 成为政府首脑会谈的一个话题, 2005年京都议定书生 效,开始全球性限制温室气体排放. 人类排放温室气 体和全球变暖两者之间是否就是因果关系,目前还 存在争论;但是全球气候变化占有各国政府内政外 交的核心地位,却是不争的事实. 学术问题一旦进入 政治层面,就会出现学科发展的天赐良机. 现在全球 变化就变成了社会的热点、科研的"显学". 新世纪摆 在地球科学面前的新任务,是要通过对地球系统的 理解,制止甚至扭转人类造成自己生存环境恶化的 趋势^[1].

与 200 年前以找矿为主要目标的地球科学相比, 这是完全不同的概念.那时的任务是矿产资源勘探, 现在新添的方向是环境变化预测.资源勘探面对的 是过去,研究的是结果;环境预测面对的是未来,研 究的是过程.矿产勘探可以靠化石形态对比确定相 对年代作定性的探讨,环境预测却要求通过实测数 据、数值模拟作定量的分析.经过了 200 年,原来泾 渭分明的学科今天又融合到一起:资源勘探也要求 追溯成矿机理、进行定量计算,研究油气成藏和金属 成矿系统;环境预测也要求追溯演变历史、比较古代 实例,研究圈层相互作用的地球系统过程.两者的结 合,就是地球系统科学.

然而意识落后于存在. 学科的发展, 并不意味着 科学家研究思路会同步变化, 我们依然习惯于原有 的学科范围和研究方法, 没有感到其中有什么不妥. 其实, 科学的发展既要靠技术进步与资源投入, 更要 靠科学家思路的新意. 本文的目的, 就是想从地球系 统科学思维的角度, 回顾这些年来在研究视域和思 维方式上发生的变化, 从而唤起改变原有思路、反思 研究方向的愿望.

2 地球系统科学在空间域里的拓展

20世纪80年代由人类活动的温室效应问题引出 了全球变化的研究,20世纪90年代扩展到整个地球 系统,指出了地球科学各学科发展的新方向,引起了 从项目立题到研究路线的一系列变化.具体的研究 工作可能没有重大的差别,但是瞄准的科学问题变 了,变得更有全球视野、更讲究数字化;研究的视野 变了,进入更深的层次、更大的空间和更小的微观世 界;追求的目标变了,从现象描述转向机理探索.为 了具体说明到底发生了哪些变化,可以分三个方面 进行回顾.

2.1 数字化的全球视野

长期以来, 地球科学的研究对象通常是某个地 区,涉及全球范围时,只是些定性的讨论.如今卫星 测量可以直接提供覆盖全球的数据,各地台站的建 设又为全球性统计提供了条件,于是定量的全球信 息大量涌现. 在前所未有的全球数据中, 包含着前所 不知的宝贵信息. 比如说, 陆地和海洋的生产力早已 分别研究,但一旦用同一标准对两者作全球衡量,就 发现海洋只占生物现存量总数的 0.2%, 比陆地低三 个数量级;而两者的年生产总量却十分相近,原因是 海洋生物的周转速率(约2~6天),要比陆地生物(数年 至数十年)快三个量级^[2]. 又如全球河流向大洋的沉 积物输运量, Milliman 等^[3~5]近 30 年来差不多每隔 10 年汇总一次,统计的河流从 67 条增加到 280 条、再 到 488 条; 他们发现 70%沉积物来自南亚、东南亚一 带,至于沉积物的供应量,并不是流域大小、而是流 域的地质因素在起决定作用,由此发现山区小型河 流有极大的沉积量输出,以前被低估了大约三个数 量级.

如果考察全球性数据随着时间的变化,就会发现更多的科学问题.就全球 CO₂排放来看,人类活动放出的碳到了大气里却发现增加量少了 1/3,说明我们对碳循环并不了解,因而发动了各个学科一起寻找"失踪的碳".水也一样,全球变暖使得蒸发加快,全球的水文循环也应当加速,大气里的水分应当相应增加^[6],在许多地方,也确实出现了降水增多的记录^[7].然而陆地加海洋的全球统计,却反映出半个世纪以来全球季风降雨有下降的趋势^[8];世界 137 条河流的统计,也说明 2000 年和 1951 年径流量的总和几乎没有区别,半世纪来总量是稳定的^[9].可见全球升温和水文循环之间的关系并不那样简单,其中还包含有更为复杂、尚未认识的因素.

将全球性数据向更长的时间序列推进,带来的 是更多的新认识.根据多种气候指标的汇总,Mann 等^[10]作出了近千年来北半球的温度曲线,发现最突 出的特征是 20 世纪后期的异常升温,使得曲线翘起, 被称为"曲棍球杆曲线".更长气候记录的汇总,主要 来自世界大洋的氧同位素数据,比如用 57 个站位资 料得出的 530 万年来的合成曲线^[11]和根据 40 个站位 得出的 6500 万年来的合成曲线^[12],都揭示出地球轨 道变化对全球气候的驱动,而每当重大的气候转折 期,气候对轨道参数的响应方式也会发生转折.这些 观测都带来了"为什么"的问题,驱使研究向深层次推 进.

这种全球性数据, 是遥测遥感和数据库等技术 发展的产物.而这种全球视野的出现,又必然带来宏 观思考的学术新意.还是原来的事物,但放宽视角、 从系统和立体的角度去看,研究对象就会发生变化. 还是那个海洋沉积,从地球系统的宏观角度看,其实 是大陆壳到大洋壳的物质转移中间站,因此从集水 盆地山区剥蚀,到河道的地貌演变与沉积搬运,直到 输入海洋、堆积海底、最终形成地层,是一个"沉积 过路系统(sediment-routing system)"^[13], 需要"从源到 汇"作系统研究. 还是那个地磁场, 从地球系统的宏 观角度看,就不仅是极性地层学的年龄问题,它向上 是对于宇宙射线的屏蔽,向下是窥视地球内核的窗 口,需要和宇宙核素、地核流场联系起来研究^[14].还 是那个潮汐,但不仅是表层海水,而是地球各个圈层 都有潮汐:海洋潮向下,是深海的水动力源头[15];大 气潮向上, 会影响电离层的密度分布^[16]; 而固体潮甚 至可以诱发地震^[17]. 地球上的万事万物, 都是地球系 统中的一部分.

所以,地球系统科学决不是地球科学又多了一 个分支,它是地球科学研究思路的改变.这种改变要 求地球科学工作者经历一种类似于"悟道"的改造过 程:把原来熟悉的研究对象,在更大的时空境界里重 新理解;把原来习惯的研究思路,在一个完整的系统 里重新调整.

2.2 向更深的层次推进

人类生活在地球表面,习惯于从表层看世界.但 是地球系统是立体的,从表层到深部存在着上下之 间双向交流的完整系统,表面变化只是其中的一部 分.一旦技术发展到具有为地球科学提供由表及里、 透视更深层次的能力,就会真相大白.

2.2.1 地面上下的双向系统

人类最熟悉的地面水是河流,古文明的发祥地 通常也在河流平原. 但是河水只占地球表层水量的 0.0001%, 对于相当于河水总量 6000 多倍的地下水, 反而没有给予那么多的注意.其实从宏观看来,地表 的江河湖水,无非是地下水出露在地表的"露头";而 陆地上的淡水,也可以看作从雨水到海水的中转站. 因此,考察湖泊、河流或者湿地时,不能只看地面的 水文条件, 而忘记了地表水和地下水是一个系统. 湿 地或者湖水的化学成分发生变化, 完全可以由于补 给的地下水而引起, 地面上看不出原因[18]. 这种现象, 在沿海的泻湖和岩溶地区更为显著. 在热带玄武岩 或碳酸盐岩的海岸,常有"滨海沼(anchialine pools)" 发育,这种从地面看来与海隔绝、而通过地下渠道与 海水相通的小型陆地水体,其盐度与水面可以随潮 汐而变化,还会含有特殊的海相动物^[19],给划分"海 相"与"陆相"界限的科学家出了个难题.

由地表水和地下水共同组成的系统,当然也有 地貌上的表现.在岩溶区和干旱区,同一条河流可以 在地面和地下交替流淌(参见文献[20,21]),我国仅西 南地区就有地下河流约 3000 条.一旦地下水渗出地 面,照样可以像地面河流一样剥蚀岩石、切割地形, 甚至形成河网^[22,23].这种所谓"渗漏剥蚀(seepage erosion)"不仅地球上有,火星上也有,属于普遍规律^[24]. 然而更加壮观的,应当是极地冰盖底下的水系.

地球物理调查表明, 南极冰盖之下除岩石地形 十分复杂外, 还存在着约 145 个冰下湖泊, 湖水总量 可能相当于全球淡水的 25%. 其中最大的"东方湖"面 积为 14000 km², 相当于半个贝加尔湖, 水深超过 500 m, 数全球第七大湖^[25], 据推算湖水的滞留时间长达 13300 年^[26](图 1). 这类冰下湖有的是冰盖形成时留 下来的"古迹", 有的是地热作用融冰造成的"新水". 不管成因如何, 这种夹在岩石地壳和数千米厚冰盖 中间的湖水, 应当很难有活动的余地. 但是卫星测高 的结果出人意料: 随着上覆冰盖压力的变化, 湖水可 以迁徙流动^[27]. 比如冰盖穹隆 Dome C 区的冰下湖群,

图 1 角奴尔血下的河沉刁砌泊 揭起平均 2000 m 厚的冰盖(上方),可以看到崎岖的地形和冰下湖、冰下河. 据 http://www.nsf.gov/news/news_summ.jsp?org=NSF&cntn_id=109587&preview=false

16个月里大约有 1.8 km³的水从一个湖流到了 290 km 外另外两个湖里^[28].至于北极的格陵兰冰盖,由于温 度比南极高,夏季在冰面聚集成湖的融冰水,可以沿 裂缝渗入冰底,通过润滑作用引起冰盖不稳定,并造 成冰底的快速水流^[29].地质时期里还发生过巨大规 模的冰下湖洪水事件:距今 1440~1240 万年前的中新 世中期,南极冰下湖水泄出,留下了 250 m 深、600 m 宽的谷道,推算当时流量可高达每秒 2×10⁶ m³ 万立 方的量级^[30].

冰下湖的发现,说明极地冰盖决不是静态的"白 色山脉",而是一个有液态水交织在里面的动态系统: 从冰层、水层到岩层,从冰盖上的融冰湖到下面的冰 下湖,都在发生相互作用.冰盖的消融,不仅有冰盖 上方的气候因素,还有冰盖下面的河流侵蚀作用.冰 下水系在地球系统科学里的价值,目前还难以估量, 尤其是封存时间以百万年计的古老湖泊,其中存活 的微生物群,是未来研究的珍稀材料,而冰下湖洪水 事件究竟会对大洋产生哪些影响,都等待着学术界 有志之士前去揭晓.

2.2.2 海洋上下的双向系统

比起陆地来,人类对海洋的认识更加表面化.作

为陆地生物,人类诞生以来就是站在海洋之外看海 水的.无论从岸上还是船上,都是自上而下看,看到 的是一个单向运动的海洋:物质和能量都是从海面 向海底传送.洋底好比是世界的终点,一度主张将核 废料倾入深海底下,以为可以永远埋葬,把海底当作 地球的垃圾桶.随着深海探测技术的成熟,人类潜入 深海,立足海底向上看,方才明白海洋是个双向系统: 不但有自上而下,还有自下而上的能流和物流.

30 年前东太平洋中隆深海热液的发现^[31],改变 了人类对深海海底的看法,也拓宽了海洋科学和生 命科学的范围.350℃高温的"黑水",从2600 m深的 大洋中脊的热液口喷出,冷凝成为金属硫化物的"黑 烟囱",滋养着依靠地热化学合成作用的"黑暗食物 链",是一个连科幻作家都感到意外的发现.这个巨 型的能量与物质源泉位于大洋中脊,是大洋板块生 成的地方,也是地球深部通向表层的窗口.海水沿着 海底的裂隙下渗,到 4~5 km 深处与熔岩接触,升温 到 300~400℃后重返海底,将深部物质与能量带到表 层,维持着特殊的成矿作用和生命系统^[32].沿着全大 洋大约6万公里长的中脊链,目前已知的热液系统就 有 100 多处.据估算,全大洋的海水每隔 500~1100 万年要到海底热液系统里循环一周,如果把洋中脊 两翼的扩散对流也算上,循环周期就缩减到 100 万年. 地球内部产生的热通量,25%~30%由大洋热液系统 向外输送^[33].

深海热液并不是海底向上输送能量和物质的唯 一源泉. 2000 年在大西洋中脊水深 750~900 m 处,又 发现了被称为"迷失城"(Lost City)的低温热液系统^[34]. 与现代洋壳形成的高温热液不同,这次是在距离扩 张轴 15 km、150 万年前形成的大洋壳里冒出来的 <40~90℃低温热液. 能量来自上地幔橄榄岩和海水 相互作用所发生的蛇纹岩化,可以形成高达 60 m 的 碳酸盐质"白烟囱",而释出的甲烷又支持了以古菌为 基础的厌氧生物群^[35].

热液之外还有冷泉,在大洋的板块俯冲带和海底的烃类溢出口都有分布.海底沉积层里的水占沉积层体积的 50%~70%,当被大洋壳负载着向下俯冲时,水被挤出地层重返海水,这种冷泉也会带上甲烷,造成碳酸盐沉积和冷泉生物群^[36].在较浅的陆坡,海底天然气水合物的分解也会呈冷泉溢出,造成碳酸盐结壳和冷泉生物群,甚至像南海北部那样出现"微生物礁"^[37],或者在海底造成泥火山^[38].此外,海底的天然气溢出口,也可以为深海珊瑚礁发育提供基础^[39].

总之,海底是"漏"的,既有海水渗入地壳,又有 流体从海底上溢,将海底以下、以至地壳深处的物质 带入海水,构成能量和物质的上、下两个来源,在海 水中相互交流. 平均 3800 m 厚的海水, 上有来自热 聚变的太阳辐射能,下有来自热裂变的地内热能;上 有氧化环境下营光合作用的有光生物群,下有还原 环境下营化学合成作用的黑暗生物群,组成了一个 上下交流的双向系统. 至于这种双向交流是否适用 于海水的物理运动,还是个新近提出的争论问题,通 常把深部海水的流动归结为"大洋传送带", 认为是北 大西洋深层水的形成,带动了全大洋从表层到洋底 的循环,因此深层流主要由表层流自上而下单向驱 动,深海环流是地球表层气候变化信号的传递手.这 种依靠海水密度差异驱动的"传送带"假说,虽然在地 质界奉为圭臬, 却受到了物理海洋学的质疑, 认为在 理论上缺乏物理学的基础^[40],在实际上也得不到观 测结果的支持^[41].海水的动力来自风力和潮汐,由于 海底地形的起伏能够将海水的潮能转为内波,因此 提出了潮能耗散为深海温盐流提供一半能量的新认 识^[42].目前,由风力和潮能推动大洋水流的假说尚待 论证^[43],内波如何推动大洋深部水体混合也还不清 楚^[44],从双向系统的角度认识海水运动,还只能说处 在研究的起步阶段.

2.2.3 地球表层和深部的双向系统

上面说洋底是"漏"的,其实地球各个圈层都"漏", 地球内部也不例外.地壳就是"漏"的:地幔的挥发性 物质,不但可以通过岩浆入侵而穿越地壳,从火山口 或者热液口喷出,还可以在板块汇聚作用下,穿过下 地壳之后沿着断层释放到地表^[45].地幔也是"漏"的: 根据锇同位素判断,地幔柱从下地幔底部上升时,带 有地核的物质,说明地壳和地幔之间也有物质交 换^[46].

板块学说的确立,为地球科学带来了革命.但是 一场革命只能解决一部分问题,板块下面还有>6300 km 的岩石与铁核,是人类对地球了解最少的部分; 板块内部,也有一大串等待解决的问题.人类入地的 能力远远落后于上天,对于地球内部的事情,至今还 只能通过间接手段探听.尽管钻穿地壳是几十年来 大洋钻探计划的一贯愿望,直至今日"莫霍钻"未能实 现.30 年来在东太平洋同一个站位钻探了 8 个航次, 也只打进基岩 1836 m,离莫霍面还十分遥远;甚至 于莫霍面究竟是不是地壳和地幔的界限,至今还是 个问题^[47].

其实地壳也是一种双向系统,看来是表面的现 象,往往有深层的根源;以为是深部的过程,实际上 会由表层引起.华北稳定地块的"活化"是地面上看到 的现象,而原因在于地壳之下,在于岩石圈减薄、下 地壳拆沉^[48].高原山脉的隆升应当是构造运动深部 过程的表现,然而表层岩石的风化剥蚀,同样可以通 过均衡补偿而引起构造抬升,因此表层的气候可以 影响深部的构造过程^[49].进一步说,地幔也在接受板 块运动自上而下的影响:表层物质通过板块俯冲,可 以造成地幔物质的不均匀性^[50].自上而下、自下而上 的作用在地球深部并不鲜见,关键在于采用适当的 手段加以发掘.我国近年来在大别-苏鲁造山带,对 于大陆地壳深俯冲与超高压变质的研究,就是探索 地球表层与深部双向交流的成功之举.比如地球表 层的氧、氢等元素,随着板块俯冲到>200 km 的地幔 深处后又重新返回地表,而超高压变质矿物中还保 留了俯冲前大气降水氧同位素的信息,整个过程不 过 1~2 千万年,被称为地质上的"油炸冰淇淋"模 型^[51].

上述陆地、海洋和地球内部圈层的例子,都是地 球科学视野向深部拓展的进展,其结果发现地球各 个圈层都是双向交换的系统,圈层之间又有"渗漏"和 联通.因此,看到表层时应当注意深部,而对于建立 在"单向"基础上的模型尤其要格外小心.与此同时, 地球科学的视野还在向更大和更小的尺度推进.

2.3 向更广阔的空间推进

半个世纪以来航天事业的发展,使得地球科学 与空间科学结合,开创了以行星尺度研究地球的新 时期.恰如研究本国史需要学习外国史、研究本国语 言要学外国语言一样,地球系统科学也需要研究其 他行星的历史,尤其是与地球相近的内行星.把视野 扩展到地球以外,从太阳系、银河系以至宇宙范围来 看地球系统,是地球科学研究史上的一次"改革开放", 其效果涉及地球演化的各种方面.本文无意对比较 行星学进行系统介绍,只是以太阳系内行星为对象, 围绕行星"全球变化"的比较,对地球系统的研究方向 做一点探讨.

2.3.1 星球演化阶段的比较

近 10 年来天文学的进展,发现了许多太阳系之 外的行星,但是迄今所知大约 250 颗行星,都是以木 星类型的为主^[52],对于研究地球系统的参考价值远 不如太阳系的内行星来得大.比较水星、火星、金星 和地球四颗内行星的圈层结构,可以看到固态部分 比较相近,都有铁质的地核、石质的地幔和地壳(图 2(a));而流态的部分相差悬殊,只有地球才有水圈, 只有金星、地球和火星有大气圈,但火星的大气极为 稀薄,大气压力只相当地球上的 0.007^[54].

这种差别,反映了行星演化的阶段性.太阳系内 行星形成的起点都十分相似,但是演化的历史和现 今所处的阶段却大不相同,以至不同星球的表面有 着不堪回首的差异.形成于星球演化早期的表面,满 布撞击坑,如今天的水星和月球;形成于火山活动期 的表面,有岩浆覆盖,如今天火星的北半球;如果有

图 2 内行星与月球的比较

(a) 大小与结构; (b) 星球表面历史(包括火山、剥蚀、沉积、陨石 撞击对现有表面的改造),显示大多内行星表面的活跃过程在 3~4 亿年前就已结束(据文献[53])

水和板块运动,就会形成板块沉积型的表面,如今天的地球.相比之下,水星和月球都早已内部"熄火", 不再活跃;火星 30 亿年前曾经有火山活动和水圈, 形成过沉积岩,到相当地球上太古代晚期时已经停止,只是几百万年前偶尔还有火山活动;金星的表面 形成于地球的早古生代,相对较新,5 亿年前经火山 活动更新过的表面,撞击坑就不如水星那么密集;唯 有地球经久不衰,至今还能充满活力(图 2(b))^[54].

可见, 星球表面显示的活力在于圈层相互作用. 一旦轻元素逸散, 水、气消尽, 只剩下石质表面, 外面 无从吸收太阳能, 内部如果还缺乏深部核反应, 便成 为"死球", 水星、月球便是实例. 火星 30 亿年前曾经 有过辉煌, 而现在表面-60℃, 是个无生命、无板块、 基本上无液态水的"三无世界", 处在长期的"冰室"状 态. 金星还有少量火山活动, 表面温度 460℃, 长期 处在失控的"暖室"状态. 内行星的早期历史彼此相似, 只有地球表面温度 15℃, 始终保持着大气圈、水圈, 还产生了生物圈, 以至能够保证"暖室期"与"冰室期" 之间的交替, 被喻为希腊神话里的盖娅地神^[55].

2.3.2 星球表面特征的比较

太阳系各个行星中,以火星的研究程度最高,一 方面因为离地球近,另方面又因为火星的大气稀薄、 便于空间探测.火星上的全球变化和表层演变过程, 为研究地球系统提供了最好的对比材料.

火星表面有明显的南北反差:南半球老而且高, 是环形坑密布的高原;北半球新而且低,环形坑少, 两者之间平均有 5 km 的高差.这种差异是火星地质 演化的结果:南半球保留了火星形成初期的地貌,是 35~45 亿年前被大量陨石撞击的表面;北半球的平原 形成于距今 35~20 亿年前,可能有过海洋发育,造成 了较新也较平的地形,不过与地球相比,这些都已经 是晚元古代以前的事.此后,火山爆发事件还时有发 生,火星上的 Olympus火山高 20000 m、直径 600 km, 体积相当地球火山的 50~100 倍,是太阳系里最大的 一个.据推测,这是 1~2 亿年前多次喷发的产物,体 积庞大是由于火星缺乏板块运动,总在同一地点反 复喷发的结果^[56].

2008年5月,美国"凤凰号"探测器在火星北极着陆,证实了火星上有水.其实火星上水流活动的地貌证据早已发现,有河道、有干裂纹,甚至有7~8 km 深的峡谷,说明有过间断性的流体活动,可能是火山活动诱发温室气体释放,造成短暂的潮湿环境所致^[57]. 而火星上沉积岩的发现,更提供了进一步的证据^[58].

火星研究的进展让地学界兴奋不已.发现了沉积岩,火星地质学的内涵就大大超越了月岩研究的范围;岩浆活动和水流的地形,是地貌学研究的绝佳材料;火星稀薄大气的强烈运动,又使得大气科学界大开眼界.学术界提出了火星古老的地质年代表^[56],探索着火星上的短暂而突发的气候活跃旋回^[57],而且早就在讨论地球上生命来自火星的可能^[59].火星上的全球变化,是地球上全球变化难得的比较对象. 不但火星上大气环流的模拟早已开始^[60],古气候界还为火星的冰期旋回计算出了轨道驱动的周期性^[61]. 在火星上,地球系统找到了自己的"兄弟",地球科学也从此不再是独子、孤本,因为有了进行比较研究的对象.

2.3.3 星球流态圈层的比较

火星的大气层尽管稀薄,大气对流却相当强盛.

火星的运转和地球相似, 一天 24 小时 40 分, 火星轴 倾斜 25.2°, 因此一年也有四季, 只是一年长度相当 地球的 687 天.与地球最大的不同, 在于火星大气只 有一个全球的 Hadley 环流, 不像地球上南北半球分 别形成Hadley 环流; 火星温差在于南北半球之间, 而 地球上最大的温差在热带与两极之间.火星上缺乏 液态水, 属于"超级大陆性"气候, 加上地面干旱和粗 颗粒的土层, 风尘暴比地球上的规模大得多, 常常高 达 10 km.与此相应, 火星只有春夏的"晴空季"和秋 冬的"风尘季"之分, 却没有冷、热或者干、湿的季节 性^[56].

金星上的大气压是地球上的 90 倍, 其中 98%是 CO₂, 而 25 km 厚的云层主要由硫酸组成^[62]. 面对今 天的金星, 地球可以看到自己的童年: 早期地球上的 大气层和今天的金星一样由 CO₂组成, 由于地球上有 海洋, 大量的 CO₂溶入海水形成了碳酸盐沉积, 又加 上后来植物的光合作用, 使得今天大气里的 CO₂只剩 下万分之几, 与火星同源而殊途. 其他星球的大气圈 也各不相同, 如木星有一万公里厚的大气层, 主要由 氢和氦组成, 而低温下冻结成颗粒状的氨和水分, 构 成了木星厚厚的云层^[63].

流态圈层值得研究的不仅是行星,有些卫星其 实更加有趣.木星的卫星特别多,其中最引人注意的 是木卫-2 即 Europe,这颗略小于月亮的星球也有地 核、地幔,但是外壳居然是上万米厚的冰,而冰层底 下是个极深的海洋^[64,65]! Europe 的冰下大洋推测有五 万米深,依靠潮汐的摩擦和地幔的热能保持液态,其 中很有可能还有生命,为我们的海洋科学界留下种 种想象的余地.可惜去木星及其卫星都很不容易,美 国计划 2020 年发射的探测器,要到 2026 年才能到达.

除了供比较之外,地外星球对于地球系统还会 产生种种的影响,比如潮汐和轨道周期的变化.地外 因素当然不限于太阳系,最近提出"宇宙气候学",认 为宇宙射线通过改变低云的水滴含量,可以影响地 球上的气候,而宇宙射线来自银河系中爆发的天体, 同时还受到磁场的调控.因此太阳系在银河系中所 处的位置十分重要,地球在最近的6亿年中出现过四 次冰室期,据说都和太阳与银河系旋臂相遇有关^[66].

现在,地球科学和空间探测相结合,比较行星学 已经成为发达国家的热门学科之一,也吸引了众多 青年学生和社会群众的兴趣. 我国的地球科学和航 天事业都在蓬勃发展, 但是两者很少结合起来, 以至 国外如此热门的新学科在国内竟很少提起, 个别热 心人的工作也难以得到重视. 其实和其他空间科学 一样, 大量研究材料都可以从开放的网上获得, 我国 完全有条件、也有必要开展比较行星学的研究, 因为 它牵涉到我国地球系统科学的视野, 牵涉到地球系 统科学理论突破的前景.

2.4 向更小的微观世界推进

地球科学的视域扩大,指的是跨越的尺度范围 增大,而不是一味追求大尺度.在向空间扩展视域的 同时,技术发展也使地球科学进入新的微观领域.原 子力显微镜、扫描隧道显微镜等种种新手段的出现, 打开了前所未知的微观世界的大门,惠及地球科学 几乎每一个学科.另一方面分子生物学等新技术的 发展,又开辟了微观生物世界的新领域.下面就纳米 矿物和微型生物两个方面,介绍微观视域给地球科 学带来的新意.

2.4.1 纳米地球科学

在 1~100 nm (即 10⁻⁹~10⁻⁷ m)尺度里研究物质 过程与特性的纳米技术,为地球科学开创了一个 新境界——纳米地球科学.从土壤到气溶胶,从 黏土到胶体矿物,地球科学里有的是各种各样的 细小颗粒.由于纳米尺度已经是单个原子和分子 的等级,一旦颗粒小到纳米级,许多原有的性质 就会发生变化,这在地球表层过程中十分常见^[67]. 比如 Mn 的氧化,影响到土壤和沉积物的吸附作用 和电位变化,是环境科学里的一种重要反应,其 中需要有赤铁矿起催化作用,但是其催化效率又 和纳米等级赤铁矿的颗粒大小相关.实验表明,7 nm 的赤铁矿比起 37 nm 的赤铁矿来,催化效率要 高出 1~2 个量级^[68].

纳米级矿物颗粒,在海洋里的分布极其广泛,正确识别纳米矿物在生物地球化学循环中的作用,是 一个关键问题.比如铁是海洋生产力的重要限制元 素,生物能利用的只是溶解铁.按照传统定义凡是 <400 nm 的都算"溶解铁"(dissolved Fe),其实在 20~ 400 nm 之间主要是胶体,<20 nm 的才是"可溶 铁"(soluble Fe).两者的区分十分重要:海水里随风 尘降落而浓度急剧变化的是胶体铁,可溶铁的浓度 却相当稳定^[69].除风尘之外,河流和冰山也是海水里 纳米颗粒的重要来源,仅每年通过融冰水和冰山运 到海洋里的悬移物质就有 2900 Tg·a⁻¹之多,基本上 属于~5 nm 大小,其中的氢氧化铁能为生物所用^[70]. 有人推测,盛冰期时冰山输运增加,由此带到大洋的 铁所产生的"铁肥效应",就足以使大气 CO₂浓度降到 冰期水平^[71].

大气里的气溶胶,相当一部分属于纳米粒级,但 不同大小的粒级也有着性能上的差异.比如海洋上 由于溅浪蒸发形成的盐类气溶胶,能够成为云核促 进云层的发育.但颗粒过小时吸引水分长成云核水 滴的能力不足,只有>40 nm 的 NaCl 颗粒才有利于云 核生长^[70].

总之,纳米地球科学目前处在诞生期,今后的发展必将带来巨大的影响.纳米科学介于传统尺度和 量子尺度之间,至于地球科学向微观世界推进是不 是就以纳米为限,恐怕还要几十年以后才见分晓.

2.4.2 海洋微型生物

20世纪末期科学向微观世界发展的一个里程碑, 是巨量海洋微型生物的发现.海洋微型生物泛指小 于 100~150 μm 的生物,包括细菌、古菌和真核生物. 原来的概念里细菌总是与疾病联系在一起,而海洋 细菌却是完全不同的概念.一些重要的海洋细菌自 己能进行光合作用,是海洋里的生产者,其中包括 0.8~1.5 μm 蓝细菌聚球藻 *Synechococcus* 和只有 0.4~0.8 μm 的原绿球藻 *Prochlorococcus*^[72]. 用细菌的 "视野"看海洋世界,1 mm³海水里通常含有 10000 个 病毒、1000 个细菌、100 个原绿球藻、10 个聚球藻、 10 个真核藻类和 10 个原生生物,这些大小不等的微 型生物之间有着密切的相互作用,构成了一个我们 不熟悉的微观生物世界(图 3(a))^[73].

更加令人惊奇的是:海洋里最主要的生物不是 鱼虾,而是微型生物,海洋生物量的 90%属于微型生物;如果论个数,数量最多的"生物体"(biological entities)是病毒.每一毫升(mL)海水中有上百万个病 毒,论个数占了大洋中有核酸颗粒的 94%,估计全大 洋有 10³⁰个病毒,连起来长度超过 60 个银河系,但是 毕竟个体小,论生物量在大洋只占 5%.有细胞核的

图 3 海洋的微型生物

(a) 海洋有机物的大小范围(据文献[73]改绘); (b) 海洋微生物生物量和丰度比较(据文献[74]改绘). POC, 颗粒有机碳; DOC, 溶解有机碳

原核生物,论个数占大洋有核酸颗粒总数不到 10%, 而生物量却超过 90%(图 3(b))^[74].

海洋微型生物的惊奇还不止于此. 在海底以下 至少上千米的深处, 居然还有巨大数量的微生物生 活着, 甚至深海玄武岩里还有细菌生活, 构成所谓的 "深部生物圈". 据估算, 地球上活的生物量, 30%是 在地下的"深部生物圈"里; 而地球上的原核生物, 竟 有 55%~85%是在地下的"深部生物圈"里! 这样, 地 球上生物圈的分布范围就大大扩展, 一直深入到岩 石圈以内^[75,76].

2.4.3 微型生物与碳循环

海洋微型生物的新发现不仅改变了细菌只是异 养、海洋生产力就是浮游植物的陈旧概念,而且还揭 示了生物利用能源途径的多样性.与陆地植物不同, 海洋微型生物中有许多特殊的光合作用途径,比如 上面提到的原绿球藻,叶绿素和光合作用都与众不 同;而有的非光合作用浮游细菌,能采用别的方法将 光能转化用作新陈代谢的能源^[77].至于"深部生物 圈"和深海热液生物群一样,在黑暗而缺氧的环境下 依靠地球内部的能量,是生物利用能量的一种比光 合作用更加古老的途径.

迄今为止,海洋碳循环的研究很少考虑微型生物的贡献.海洋生产力与碳循环的模型,基本上是建立在浮游生物和颗粒有机碳的基础之上,但是海水里的有机碳中90%是溶解有机碳,海洋生物量中90%是微生物,忽略了两个90%的不可能是正确的模型,一系列的基本概念有待纠正.20世纪80年代初期就提出了"微食物环(microloop)"的概念,认为浮游动物、植物产生的溶解有机碳,可以被细菌吸收利用形成颗粒有机碳,再通过原生动物的摄食重新回到主食物链,展现了海洋碳循环的新环节.但这还只是一部分,海洋溶解有机碳中90%~95%是难以为细菌降解的"惰性溶解有机碳",在海洋里起着"非沉降生物泵"的作用^[78].所有这种种过程,都有待纳入海洋碳循环的模型中去.

最近一项重大发现是深海病毒对碳循环的影响. 如所周知,病毒没有细胞结构、但是有遗传和复制等 生命特征,算不算生物都有过争论,过去主要因为其 病害作用才受重视.20世纪90年代起,认识到海洋病 毒的重要性:浮游病毒作为海洋微型生物的"杀手", 通过对宿主微型生物的裂解,改变着海洋生态系统 中的物质和能量循环,形成"病毒环(viral loop)"或者 "病毒回路(viral shunt)",能够提高生物泵的效率,改 变海洋微型生物的丰度次序^[74].2008年底,又发现病 毒是"深部生物圈"里 80%微型生物的"杀手",通过 "病毒回路"每年为海洋输送 3.7~6.3 亿吨的碳,是深 海碳循环的重要角色^[79,80].一旦明确了它们在深海 碳循环中的作用,必将有助于解开碳循环在地质尺 度上的疑窦.

无论纳米矿物还是微型生物,都是地球科学在 微观尺度上的拓展.尺度上的拓展,带来研究角度的 变化.就微型生物来说,需要在纳米到微米的尺度上 研究微型生物的生态学,然后才能认识他们在全球 碳循环中的贡献^[81].以地球圈层相互作用为对象的 地球系统科学,通过向更深的层次、更大的空间和更 小的微观世界推进,扩大了在空间里的视域,标志着 地球系统科学的重大进步.而圈层相互作用的过程 是在时间里发生的,为此需要讨论地球系统科学在 时间域里的进展.

3 地球系统科学在时间域里的汇合

构成地球系统的圈层,是在空间里的划分.与此 同时,不同圈层的运动过程还有着时间尺度上的差 异,总体说来流态圈层的过程比固态的快,密度小的 圈层变化速率高于密度大的圈层;即使在同一个圈 层内部,不同过程的时间尺度也有千变万化.关于地 质、地貌各种过程的速率差异,20年前就有过专著总 结^[82],无须在此重复.这里要讨论的,是地球系统科 学在时间域里遇到的问题,而这要从地球科学的历 史说起.

3.1 地球科学的"古""今"鸿沟

地球科学不同的学科,有着不同的来源.以寻找 矿产资源起家的固体地球科学和预测风向、警告洪灾 的流体地球科学,从诞生起就不相同.地质学的诞生 是找矿的需要.当时被看成"挖沟仔"的史密斯 (William Smith),根据"有同样化石的地层年龄相同" 的假设,在 1799 年绘制了第一张地质图,被后人称 为"地质学之父"^[83].如此建立起来的地质学,需要的 是标志地层的符号和地质历史的结果,而并不关心 今天的过程或者明天的变化.相反,当 1686 年哈雷 (Edmond Halley)制作第一张信风和季风分布图的时候,关心的是今天的过程,也不会去捉摸多少万年前的古代风场.长期以来,固体和流体的地球科学就像"两股道上跑的车",各自分别在"古"和"今"两个不同的时间域里发展.

随着科技的发展,这种分野日益模糊.一方面, 矿产勘探开发的深入需要了解矿床形成和破坏的过程,地质灾害的预警更要求知道今天和明天的变化, 从"古"向"今"推进;另一方面,大气和海洋科学为预测未来的变化,也必须研究过去的变化,从"今"向 "古"延伸,这也就是地球系统科学在时间域里的发展 趋势.下面的讨论将要展示:处在时间尺度两头的学 科正在相向而行,然而两者之间的鸿沟依然深邃. "今"、"古"之间并不应该是时间尺度上的区别,所谓 "现代过程"本身就包括地质尺度的长期变化,所谓 "古代过程"也可以和"现代过程"在相似的时间尺度 上进行研究,两者的区别在很大程度上是学科发展 历史和时间分辨率技术限制的产物.

3.2 地球系统时空尺度的连续性

近代科学的发展表明,地球系统的过程无论时 间还是空间上都具有多尺度的性质,而且这些尺度 构成连续的序列,其间的间隔与鸿沟其实只存在于 我们的脑子即认识之中.

3.2.1 现代过程研究向长时间序列发展

随着地球科学预测未来任务的加重,现代过程 长序列记录的重要性也愈益突显,而且在大气与海 洋科学中格外明显.大气CO₂浓度变化的记录是最好 的例子.研究碳排放的温室效应,不能只看这几年, 而现在最长的记录来自夏威夷 Mauna Loa 实验室,从 1958 年开始测量直至今日^[84],证明半世纪来 CO₂浓 度一直在上升.然而当时对温室气体并无兴趣,起初 对 CO₂浓度测量的成果并不重视、也不容易发表,而 现在成了大气化学全球最宝贵的长记录,是温室气 体浓度增高最为直接、最为准确的证据,更早的记录 就只能借助于冰芯气泡里大气成分的分析.

另一项长期观测的重要成果是厄尔尼诺成因的 发现. 20 世纪 60 年代已经知道厄尔尼诺是热带太平 洋海气相互作用中的重大异常,但是不明白形成的

原因. 1985年开始, 在太平洋赤道两侧投放了将近 70 个锚系, 对水文、风速、风向等连续观测十几年, 追 踪大气与上层海水的变化, 终于揭示出西太平洋暖 池次表层水温与东太平洋上升流的关系. 原来发生 在东太平洋表层海水的异常, 根子在西太平洋的次 表层, 从而为提前一年半载预报厄尔尼诺提供了科 学依据^[85].

对海洋沉积过程认识的一次重大变化,来自沉 积捕集器的发明. 早先认为, 浮游生物尸体和悬移颗 粒像雨点一样均匀地垂直降落海底, 20 世纪 70 年代 晚期发明的沉积捕集器, 定期连续收集海水中的沉 积颗粒、测定表层大洋的输出通量, 发现远洋沉积并 非均匀发生, 而是一种脉冲式的"事件"过程, 并且证 明了浮游生物勃发在沉积过程中的重要性^[86]. 连续 观测对深海沉积学的另一重大贡献, 是深海"海底风 暴(deep storm)"的发现. 1978 年起在加拿大岸外的北 大西洋深海区, 设计了专门设备进行连续观测. 7 年 现场试验的结果, 发现表明海底以上 10 m 处的最大 流 速 可 达 15~40 cm·s⁻¹, 悬 移 物 浓 度 高 达 3500~12000 μg·L⁻¹, 这种"海底风暴"平均每年发生 8~10 次, 每次延续 2~20 天^[87]. 这次发现, 从根本上 改变了深海动力学的概念.

由此可见,只有长期观测才能获得地球系统中 变化速率的客观数值.对于地质过程,往往是"测量 的时间越短,运动的速率似乎越大",因为"大部分地 质过程是间歇性的,快速变化总是和更长的宁静期 交替出现"^[82].

3.2.2 现代过程时间尺度的多样性

地球系统科学在时间域里的一项重要进展,是 对于现代过程时间尺度的新认识.从前认为地质作 用是超越人类观测范围的缓慢过程,现在随着观测 与计时精度的提升,地质过程的真实速率已经展现 在我们眼前.比如板块运动,根据卫星定位的精确测 量,我国东部正以 11~12 mm·a⁻¹的速率朝南东东方 向移动,而菲律宾海板块以 70 mm·a⁻¹速率向北西方 向推进,因此两者相对汇聚速率为 80 mm·a⁻¹;这种 汇聚速率又不是均匀分布,其中在台湾岛的海岸山 脉与中央山脉之间的汇聚速率就高达 31~33 mm·a⁻¹. 这里沿着断层发育的秀姑峦溪,有一座玉里桥东西 两端相距只有 575 m, 而 1995~1999 年间测量表明, 桥两端正以22 mm·a⁻¹的速率相向汇聚^[88]. 与这种惊 人的运动速率相比, 我国东部大陆壳内部的位移就 慢得多: 1998~2005 年间, 华北与华南之间沿秦岭-大 别造山带的相对位移速率只有 3.1 mm·a^{-1[89]}. 所以 说,只要把测量的精度提高、把观察的视野拓宽, 所 谓"移山倒海"、"海枯石烂"的变化,不再是神话般的 地质历史, 它们和"日月经天"、"江河行地"一样, 都 是发生在眼前的"现代过程".

这种快速与慢速运动的对照,在海底扩张速率 中同样明显.同是新生洋壳诞生地的大洋中脊,东太 平洋的扩张速率高达 100~200 mm·a⁻¹,而印度洋却 不足 20 mm·a⁻¹,分别属于快速和超慢速的扩展过 程^[90].甚至地震也有快慢之分.美国和加拿大西海岸 外的 Juan de Fuca 板块,向东俯冲到北美陆地板块之 下,近百万年来平均速率 40 mm·a⁻¹,每隔五、六百 年可以产生一次 8 级、甚至 9 级的大地震.但是近年 来的连续观测发现,在 25~45 km 的深处板块在缓慢 俯冲,属于安静的"慢地震",只是每过 15 个月左右会 有一次"颤动(tremor)",在 10 多天的时间里突然移动 几厘米^[91,92].这种"慢地震"在几十分钟到几个月之间 释放能量,和在几秒钟之间释放能量的"正常地震"大 不相同.这项发现改变了对地震能量积聚与释放机制 的认识,原来这也是一种间隙性、而不是渐变的过程.

地球系统中同一过程的快速与慢速并存,是一种普遍现象.海洋沉积作用的间隙性前面已经讲过 (见 3.2.1),而最大的快速沉积事件是海底滑坡,比陆 上滑坡的规模可以高出 2~3 个数量级,这是沉积物从 陆地跨过陆坡进入大洋深海底的基本机制之一.挪 威岸外的一次滑坡,沉积物体积达 3000 km³,移动距 离 800 km,影响挪威陆坡的面积达 95000 km^{2[93]};而 夏威夷 Oohu 岛外一次滑坡,体积竟达 5000 km^{3[94]}. 甚至于平时不易察觉的水气交换,在一定条件下也 可以成为灾变事件. 20 世纪 80 年代西非喀麦隆两个 湖泊先后发生爆发性的"湖喷",原来溶解在湖水里的 CO₂突然气化喷出,使成千人窒息致死.同样的现象, 完全可以在海水里发生^[95].

总之,现代过程的速率可以有几个数量级的差别."短促地震的位移可以比克拉通的长期运动快百 万倍,潮湿热带的高山剥蚀可以比温带低地快上千

倍, 三角洲沉积比深海沉积至少快 1000 倍, ……"^[82]. 在现代过程时间尺度多样性面前, "现代"与"地质"尺度的"古"、"今"界限已经突破.

3.2.3 古代过程研究向定量化和"现代化"发展

时间尺度的突破,同样也发生在"古"的方面.利 用高精度的测试技术和高分辨率的测年手段,一些 地质历史上的事件已经可以用类似研究现代过程的 方式加以探讨.6500万年前的白垩纪大灭绝,在地学 界早已"家喻户晓".现在根据地层里的铱异常和冲击 石英,结合撞击区的地震勘探,给出了当时最可能的 具体过程:一颗大约 10 km 直径的小行星侧向撞击 在墨西哥尤卡坦(Yucatan)半岛区,形成了直径近 200 km 的巨型陨石坑.撞击产生的尘埃和硫酸气溶 胶造成了酸雨,在近 10 年的时间里地面太阳辐射量 又减少 10%~20%,结果导致了生物的大灭绝^[96].尽 管其中许多推算存在争论,但是研究的时间尺度已 经和现代过程相对应.

大洋钻探近年来又证实了一次古新世末的灭绝 事件: 5500 万年前由于海底天然气水合物突然分解, 导致大量底栖生物灭绝,释出的甲烷气引起温室效 应,使得高纬区海面温度上升 9℃,底层水温上升 4~5℃.由于甲烷释出的 C 总量高达~2 万亿吨,海水 随之"酸化",深海碳酸盐迅速溶解,结果在不到一万 年的时间里 CCD(深海碳酸盐补偿深度)下降约 2000 m,以后再经过 10 万年以上的长期过程方才恢复^[97]. 这次所谓的"古新/始新世高温事件(PETM)",对于处 理当前的温室气体排放和开发海底"可燃冰",提供了 极其宝贵的历史教训.

高分辨率的地质记录,当然离现代越近保存越 多.吸引社会广泛注意的是末次冰期后回暖过程中 的突然变冷事件,其中最著名的是"新仙女木期 (YD)"事件.距今 12900 年左右,正在逐渐变暖的气 候突然回冷,从格陵兰冰芯看可能降温15℃,降尘量 大增,而降雪量却减少一半.经过 1300 年后又突然 返暖,而且变得更快:近 40 年内上升 7℃,降尘在不 足 20 年内下降一倍,冰雪堆积速率在 1 年以内增加 90%^[98].另外一次返冷事件发生在距今 8200 年前,从 格陵兰冰芯的纪录看历时 160 年半,降温(6±2)℃^[99]. 和新仙女木期一样,这次变冷的原因通常也归结为 北大西洋深层水的产生速率下降^[100],这也正是当前 全球气候变化所面临的问题.这类气候突变事件的 成因,其实并不清楚,最近在新仙女木期地层中发现 纳米金刚石,提出了彗星影响的可能性^[101].无论其 成因如何,这种灾变性的变化速度对于人类社会造 成的威胁,足以引起所有政府的关注.

归纳起来看,现代过程的研究强调长序列记录, 地质过程的研究强调高分辨率,两者正是在探索机 理的共同目标下,相互汇合.站在地球系统科学的高 度看,这是被不同学科分隔成为片断的时空连续系 列,朝向其自然面貌的回归.

3.3 地球过程时间尺度的连续性

在论证了"古""今"时间尺度的统一性之后,就可 以对地球过程的时间尺度的整体进行讨论.前面已 经谈到,同样的过程通常有快速与慢速之分(见 3.2.2). 如果对于地球系统中各种时间序列加以分析,就不 难看出在同类过程之中,存在着不同尺度的叠加;在 同一原因引起的不同过程之间,又存在着时间尺度 上的差异.

3.3.1 不同时间尺度的叠加

地球系统中广泛存在的旋回现象,往往在不同 时间尺度上发生并且相互叠加.温度是地球表层变 化中研究最多的一项环境参数,通常以冰盖的消长 作为衡量标准,而海水中的氧同位素为此提供了最 为方便的标志.根据极地是否有大型冰盖发育,地球 历史上有 10⁸ 年等级的"暖室期"与"冰室期"的交替, "冰室期"内又有 10⁴ 年等级的"冰期"与"间冰期"的周 期,而冰期之内又有 10³ 年等级的"冰阶"与"间冰阶" 的轮换.这三种尺度上的变化属于不同因素驱动的 结果:10⁸ 年等级的通常认为由构造因素造成,10⁴ 年 等级由地球运行轨道变化引起,10³ 年等级属于气候 系统内部因素变化的结果^[102].某一时间里观测到的 冰盖消长或温度升降,必然是三种尺度变化相互叠 加的结果,同时反映着三类驱动因素的影响,因此只 有通过梳理才能认识变化的原因.

地球磁场变化,是地球系统过程中另一个热门 话题.不同时间尺度的地磁场变化,为海陆的地层对 比和板块的古地理再造提供了宝贵依据.在极性地

层学里通常使用的是地磁场倒转的"极性带(Chron)", 一般延续 2~3 Ma,当前的布容正向期才过了 70 多万 年^[103].在这 10⁶年尺度旋回以上的,有 10⁷~10⁸年尺 度的"极性超带(Super-Chron)",白垩纪中晚期连续 ~3400 万年的正向期,就是极性超带中最清楚的一 个^[104].近年来的进展在于晚第四纪高分辨率的磁性 地层学,包括极性偏移和地磁场古强度的研究.在布 容正向期内,就发现有 11 次短暂的负极性时期,松 山反向期内有更多次短暂的正极性时期,都叫做"极 性偏移(excursion)",每次相隔数万年、延续不足 5000 年^[105].同时,地磁场除极性倒转外,磁场强度也在 不断发生变化,可望成为高分辨率的地层对比标准. 因此,在极性超带(10⁷~10⁸年)、极性带(10⁶年)和极性 偏移(10³年)之外,还正在探索建立高分辨率古强度 (paleointensity)序列的可能. 有趣的是每次极性偏移, 都对应于磁场强度的低谷(图 4)^[14,105].

类似的多尺度叠加现象,在地球系统中十分常见,但不见得都像冰盖和地磁场那样系统化.海洋的碳酸盐沉积就是一例:60年前已经发现更新世深海沉积中的碳酸盐丰度(%)有周期性变化,可以与冰期旋回对比,属于10⁴年等级的旋回^[106];后来在晚中新世深海沉积中,又发现了碳酸盐丰度10⁶年尺度的变化,如约9~7 Ma前的"碳酸盐崩解"与6~4 Ma前的"碳酸盐勃发"^[107];更长的还有显生宙"文石大洋"与"方解

(a) 近 500 万年来的磁性倒转; (b) 松山反向期内的极性漂移(箭头所示)和磁场强度(10 点平滑). 据文献[105]改绘

石大洋"在 10⁸ 年尺度上的交替^[108],同样也是碳酸盐 生产与保存条件的旋回.由于这三种尺度的变化是 在不同地质时期得出的结果,它们之间的相互关系 至今缺乏系统的认识.

各种尺度的旋回或者节律^[109],从构造到沉积的 各种地质记录中都有出现,而应用上首先是地层对 比.上面所举三种,也就是"同位素地层学"、"磁性地 层学"和"碳酸盐地层学"的基础.地层对比固然重要, 对于地球系统科学来说更为根本的是要揭示其中的 机理、理清头绪,对比才能正确,这一点我们后面还 要讨论(4.2.1).

3.3.2 不同过程的时间差异

响应与反馈,是地球系统内部联系的基本方式. 既然不同过程可以有不同的速率和时间尺度,对同 一事件的响应就会出现时间差异.晚近时期里最为 突出的变化是冰期旋回,两万年前有 1/3 的陆地压在 数千米冰盖之下,经过 8000 年左右的融冰过程,进 入今天的间冰期,大地回暖、万象更新,但是并非所 有的变化都同步发生.冰盖消融使全球海面上升,但 由于地壳的均衡补偿作用,原来压在冰盖下面的斯 堪的纳维亚半岛至今还在反弹,相对来说海平面反 而在回落;冰期时出露水面的陆架发生海侵,但是陆 地输出的海洋沉积只够覆盖河口附近,大片的陆架 依然被冰期的"残留砂"覆盖,因此表层沉积不等于现 代沉积^[110].

甚至海水的化学成分,也显示出冰期后的"迟 到"现象.海水中溶解的 Sr,是由河流输入的大陆风 化产物,和大洋中脊扩张带来的热液成分共同组成, 海水的同位素⁸⁷Sr/⁸⁶Sr 比值反映了两者之间的平衡. 近几百万年来,海水⁸⁷Sr/⁸⁶Sr 比值以 0.000054 Ma⁻¹ 的速率递增,热液的输出通量已知为(0.5~3)×10¹³ kg·a^{-1[111]},如果按照现在河流输出的 Sr 通量计算, ⁸⁷Sr/⁸⁶Sr 的增长速率应当是 0.000425 Ma⁻¹,比上述值 高 8 倍.今天大洋的 Sr 收支失衡,原因在河流输入的 通量缺乏代表性:末次冰消期大陆风化速率特别高, 直到现在还未与冰后期气候平衡,造成了河流 Sr 通 量的异常高值^[112].具体说,冰期时产生出大量新鲜 的黄土状细颗粒,有利于化学风化作用^[113];加上冰 消期河流沉积速率可以成 10 倍增长,提高了海水中 Sr 来自河流的比例^[112].

地球表面过程的这类"迟到"现象十分普遍,包括当前的温室效应:从温室气体排放到气候效应,其间有几十年的迟到.现在大气中的温室气体是过去排放的结果,即使不再排放也还有尚未发挥的温室效应,足以再引起 0.5℃的升温^[114].在更长的尺度上,气候变化的轨道驱动,从太阳辐射量变化到冰盖消长,也有数千年的迟到,造成"相位差"^[115].正是这种迟到效应造成地球系统过程的复杂性,同一事件的效应可以在不同时间里出现,而同一时间里出现的可以是不同事件的反应.不同海底的"表层沉积"会产生于不同时期,不同深度的海水会测出不同的年龄,说明地球表层在空间里呈现的差异,往往是时间差异的投影.

这种差异性的重要价值,在于对以往事件的"记忆力".由于气温通过岩石的扩散作用十分缓慢,今天钻孔里测到的温度剖面可以用来测算古气温,比如说距今10,100,1000年的温度,会相应在地下25,80和250m深处造成异常值^[116].相反,如果对于时间差异不加分辨,"记忆力"效应反而会造成对现代过程的误解.

3.3.3 时间尺度上的拓展与汇合

如上所述,地球系统在时间尺度上是一个连续体,各种不同速率的过程通过不同时间尺度的叠加, 交织为一个复杂的整体.和空间域里一样,科学在时间域里也大幅度地拓展了自己的视野,正在进入更短和更长的时间尺度.2007年,美国科学界为能源科学新挑战选择基本问题,结果认为应当在于微观世界,也就是要在电子尺度上控制物质过程,而相应的时间尺度是微微微秒(attosecond,即10⁻¹⁸ s),属于量子尺度^[117].

和地球科学关系更加密切的是时间的宏观尺度. 对于地球形成以前的历史,无论从宇宙大爆炸到出现第一颗星球之间所谓"宇宙黑暗期"的探索^[118],或 者是利用陨石的同位素分析对太阳系起源的研究^[119], 都取得了辉煌成绩.而关于地球形成早期过程的研 究,对地球系统科学的意义尤其重大.根据陨石同位 素分析结果,距今4567 Ma时太阳星云里出现第一颗 固态颗粒,标志着太阳系形成过程的开始^[120].此后

只过了大约 1000 万年,像今天火星大小的地球胚胎 就已经出现,所以地球和太阳系的年龄没有多少差 别^[121].

以地质尺度衡量,地球圈层的分异也是相当迅 速的过程. 地球形成于 4550 Ma, 而最老的锆石测的 年龄为(4404±8) Ma, 说明此前已经有地壳, 留给地 壳形成过程的时间至多不超过一亿五千万年[122].地 核的形成更是个突变过程^[123],因而有"铁灾变(iron catastrophe)之称".随着对地球形成初期演化资料的 增多, 地质界早已在太古宙以前增添了"冥古宙 (Hadean)",包括从地球起源到生命起源的一段时 间^[124]. 由于这段大约七亿年的历史(4550~3850 Ma) 并无直接的地质记录,这种地质年代命名恐怕难以 持久,已经有人提出显生宙以前将近 40 亿年的历史 决不止现在的三个宙(冥生宙、太古宙和元古宙),至 少应该是五个宙^[125]. 比如地球形成后 4000 多万年, 就遭到一颗火星大小的星球撞击,形成了月球,但也 抹掉了地球此前的演化结果[126],这就应当是"冥生 宙"之前另一个宙的结束. 近年来的新发现, 将地球 早期演化中一些重要环节的时间大为提前:格陵兰 发现洋中脊成因的岩脉,说明 38 亿年前已经有洋底 扩张和板块运动[127]; 最早期古土壤所标志的"大氧化 事件(great oxidation event)",将大气中氧的出现提前 到距今 2450 Ma^[128].

近年来地球早期历史研究的进步值得大书特书, 决非以上的轻描淡写所能概括.然而在沉积记录出 现之前,地球早期历史或者太阳系演化的历史,很大 程度上是同位素分析与计算机模拟相结合的产物, 直接证据相对缺乏;加上离今时间过于久远,很难像 后期的过程那样查明精确的时间关系.这些成果确 实扩大了地球系统科学的时间尺度,但是探讨地球 系统科学在时间域里的问题,还是要以较近的时期 作为重点,其中核心问题就是时间尺度的汇合.

前面说过,由于学科分工造成时间尺度上的隔 阂,正在随着科学进步而逐渐淡化.地球过程在时间 尺度上的汇合,已经成为新的趋势.地球科学历史上, 贯穿古今时间界限的研究成果并不罕见.比如化石, 本来是人们根据现代生物的知识,去识别古代的化 石;但是也有反过来的事例,水杉(Metasequoia)和颗 石藻(Coccolithophores)都是先知道化石、后来才发现 还有现生生物存在."深海风暴"也是先由地质学家根 据海底沉积和地形作出推测,然后才通过海底观测, 得到物理海洋学的证据和解释.如果说当年被封在 岩盐包裹体里的细菌,休眠了 2.5 亿年至今还能成 活^[129],以至微生物"生"和"死"的界限都成了问题^[130], 哪里还能划得清"古代"与"现代"生物的界限? 总而 言之,"古""今"之间的联通,不同时间尺度的汇合, 已经是地球系统科学的总趋势.

4 穿越时间尺度的隧道

以上回顾了地球系统科学在空间和时间两方面 的拓展,并且通过所取得的进展和遇到的问题探讨 了发展的趋势. 总的说,各大圈层在空间里联系的认 识,有了突破性的成绩;然而有关过程在时间里的关 系,还没有引起地球科学界足够的重视. "古""今"的 鸿沟依然严重,而且时间序列的分析又习惯性地集 中在个别周期上. 地球系统科学将如何在时空尺度 的跨越中前进,需要从科学的多尺度问题入手进行 分析,然后再来讨论我们的对策.

4.1 地球系统科学中的多尺度问题

4.1.1 地球科学的时空尺度

现代科学大为拓展了时空的范围.时间上从宇宙大爆发的136亿年(10¹⁷ s),到现在能测到的最短时间"微微微秒(attosecond, 10⁻¹⁸ s)^[131],跨了35个量级;空间上从宇宙可见直径的百亿光年(10²⁶ m),到基本粒子的10⁻²⁰ m等级,跨越40多个量级^[67].这里有趣的是时空之间的关系:空间大的过程,其产物的延续时间也长.最大的空间当然是宇宙,存在的时间也最长;相反的另一端是基本粒子,时空的尺度都最小(图 5).

从科学的大背景下看,地球系统只占据其中的 一部分:空间从地球直径的10⁷ m 到原子大小的10⁻¹⁰ m^[67];时间的上限是地球产生以来的10¹⁶ s,下限可 以看成是毫微秒(nanosecond, 10⁻⁹ s).更大的尺度属 于天文学和物理学,更小的尺度属于纳米科学和基 本粒子的物理学,包括最近提出的、针对10⁻¹⁸ s 等级 的"微微微秒世界 (attoworld)".即便如此,地球科学 还是跨越了20个左右的时空尺度,其中也是空间范 围大的事物时间延续也长.比如南北长达2400 km

的南海,海盆开始形成以来已经 3000 万年;而几微 米大小的海洋细菌,寿命却可以短到不足 10 分钟^[132] (图 5). 正是这些跨越数 10 个时空尺度的事物,构成 了复杂的地球系统;跨越时空尺度,是地球系统科学 绕不过去的学术挑战."沿着这条尺度之路,能够在 各个站点之间架起有效桥梁的科学,应该是最有新 意和最激动人心的"^[67].

4.1.2 地球科学中的多尺度分析

地球系统在时空里的多尺度性质是十分明显的. 其实,多尺度现象在各种系统中普遍存在,从生物学 到力学,从化工到设计制造,都有多尺度分析的需要. 所谓多尺度分析,就是要分析识别多尺度结构,并且 认识其效应.地球科学的复杂系统里,不同尺度现象 的分辨,往往能提供识别机理的钥匙.10多万米高空 的空间物理现象,比起地面过程来应当比较单纯,但 是多尺度问题同样重要.比如极光,在上百公里的大 尺度上规律清楚、而在小尺度上就具有混沌性质^[133]; 磁层亚暴多尺度现象的认识,便有助于澄清不同亚 暴模型之间的争论^[134].

地球表面的情况相对复杂. 就拿土壤来说, 本身

就是个多圈层相互作用的复杂系统.这里有岩石圈 的矿物,有来自生物圈的有机质,还有与水圈联通的 水分,三者在土壤里的变化时间尺度不同:矿物以 10⁴年计,有机质以10²~10³年计,水以10⁻²~10⁻¹年甚 至以分计,但他们之间发生着相互作用.因此如何保 持土壤的稳定条件,就是一个多尺度问题^[135].

地球科学里的多尺度, 往往在空间和时间上一起出现. 海洋里小尺度的波浪, 中尺度的涡旋, 再到 大尺度的环流, 既是空间、也是时间的尺度差异. 超 过一定的时间长度, 看到的就是全大洋的变化. 前面 谈到过海水化学成分, 溶解元素含量的变化反映了 大陆与海底两种输入量之间的平衡. 但是不同元素 的滞留时间可以差几个量级, 因此同样在 10⁴ 年尺度 的冰期旋回中, 各自的反应不一: 在海水中滞留时间 短的如 Os (3.5~5 万年)和 Pb(<30 年), 它们的同位素 变化反映出冰期旋回, 说明冰期时大陆的化学风化 速率下降 2~3 倍; 而 Sr 和 Mg 的滞留时间分别 长达 200 万年和 1000 万年, 它们的同位素对冰期旋回并 不敏感, 反映的是地球系统在构造尺度上的演 变^[136,137].

但问题在于这种多尺度性质,通常都不是一眼

就能看穿的,如果不加注意地去分析时间序列,就有 邯郸学步、东施效颦的危险.古环境、古气候的研究, "朝 是成天接触时间尺度问题的学科,而我们最习惯的 时期 做法一是对曲线、二是谱分析,一旦对上了某种周期 第" 就可以发表论文,但这不是探索气候变化的正确途 "日 径.从晚第四纪入手的米兰科维奇学说,集中在 2 年初 无、4 万和 10 万年的周期上.其实气候变化的时间尺 其第 万、4 万和 10 万年的周期上.其实气候变化的时间尺 其第 之下还有半岁差、1/4 岁差^[139],而且这些周期只反映 定时 讨论范围之外^[140]."气候变率在所有时间尺度上都存 每4 在,而且气候过程是密切相联的.因此要理解一个尺 到 度上的变化,就需要对整体都有所了解"^[141].所以说, 以所 尽管古气候定量分析是 20 世纪地球科学的亮点之一, 转载

尽管古气候定量分析是20世纪地球科学的亮点之一, 实际上离谜底的揭晓还有很长的距离. 当20世纪早 期,彭克用阿尔卑斯冰碛物研究冰期、米兰科维奇用 手算太阳辐射量的时候,不可能奢谈什么多尺度和 连续体;但假若事到如今还只会对曲线、对频谱,科 学创新就只能是一句口号.

4.1.3 "人类中心观":认识地球系统的障碍

一部科学史,其实就是人类不断开阔眼界、拓宽 时空视野的历史; 换个说法, 也就是人类不断克服自 身生理的限制,进而认识世界的过程.最重要的里程 碑是从"地心说"到"日心说"的"哥白尼革命". 人类生 活在地球上, 眼睛看到太阳上升和下山, 当然以为太 阳围着地球走, 所以"地心说"是人类直观的感觉. 感 官对我们来说过于重要,健康人决不会去埋怨它们 有什么局限性. 但是时空尺度有 40 个上下的数量级 (图 5), 人类感官能够覆盖的范围实在太小. 空间上, 肉眼只能看到真核生物中的大型生物---动植物, 但是作为地球生态系统根本基础的原核生物我们却 看不见,在地球系统里"它们的生态过程影响着化学 元素周期表里几乎所有的元素, 默默无声地'耕耘'了 40 亿年, 直到今天才有可能得到重新评价"^[142]. 忽视 微生物、研究大型生物,是因为我们自己是大型生物. 植物分类的创始人是瑞典的林奈,有人设想:"如果 林奈只有10mm高,钻进爱丽丝的小鞋里,他会不会 去研究微生物,而不是我们肉眼看得见的大树?"^[143].

在时间上,人活百年就是高寿,虽然不至于像 "朝菌不知晦朔, 蟪蛄不知春秋"那样惨, 但是与地质 时期相比却实在太短,在冰期旋回的尺度上你我不 算"朝菌"也是"蟪蛄". 我们用来计时的"年"、"月"、 "日",适用于人类社会,却无法适应地质过程.地质 年表里用"年"计时,说53000万年前"寒武纪大爆发", 其实和每过 3154 万秒过一次生日的说法一样别 扭[144]. 一种不自觉的偏见, 就是拿今天的状况推向 古今, 以为历来就是如此. 地球系统有许多以为是固 定的参数,其实都在变.今天的回归线在 23.5°,因为 这是今天地轴的倾角, 而倾角是以 4 万年的周期在变, 每年减少半秒. 台湾嘉义 1908 年建造的北回归线塔, 到 1996年已经落在回归线以北 1.27 km, 到 9300年 以后更要相差 90 km^[145]. 今天的地磁轴与地球的旋 转轴之间相差 11°, 但是也在变, 从几千年的尺度看 两者是重合的[146]. 当我们研究地球系统的古老现象 时,也总容易按照最近一万年"全新世"的背景考虑 问题. 其实最近 200 万年地球两极都有冰盖, 这是地 质历史上近六亿年来独一无二的反常状态. 地球历 史上大多数时间里极地大冰盖并不发育,因此也不 会有今天那种稳定的西风带,也不会有极锋发育,大 气和大洋的环流与今天根本不同[147].

总之,地球系统的时空尺度中,能由人类感官和 寿命覆盖的部分太小.因此拿人类尺度看地球系统 的"人类中心观",是一种"坐井观天",犹如天文学里 的"地心说"一样,是地球系统科学发展的障碍.当人 类处在农耕社会时,这并不重要;而对于想要宇宙航 行、开发深海的人类就决不能允许.即便有了摆脱地 心引力的航天工具,有了探索远古时代环境记录的 先进手段,如果科学家的思维仍旧倾向于"人类中心 观"而不自觉,就会像 500 年前对付"地心说"一样,需 要一场地球科学思维方式上的革命.

4.2 古今结合穿凿时间"隧道"

行文至此,方才走到本文的题目:"穿凿地球系 统的时间隧道".说"穿凿"而不说"寻找",是因为现 成的"隧道"并不存在.地球系统科学发展首先遇到的 问题是识别圈层间的相互联系,发现跨越圈层的物 流与能流;在此基础上,下一步的任务在于解译这复 杂系统的运行机制,这样才有预测的功能.如果前一 步的重点在于过程的空间分布,那么后一步的关键 是过程的时间关系.不同尺度的过程如何在时间上 相互结合、形成系统,这正是地球科学的弱点所在. 固态和流态地球科学历史渊源不同,而人类在时间 上的穿越能力又远远落后于空间,可以预见时间尺 度问题必将成为地球系统科学进一步发展的症结. 为此,我们提议尽早着手,从技术手段、思想方法和 研究计划等几方面入手,在地球系统科学的大工程 里穿凿"时间隧道".

4.2.1 跨越尺度的时间序列

克服时间尺度上的"古""今"鸿沟,客观条件是要 建立跨越尺度的时间序列,办法是从历史记录和现 代过程"两头抓".第四纪高分辨率古气候研究,三、 四十年前最好的是深海沉积,一、二十年前是冰芯, 近年来又有石笋,不知道以后还会有哪种更好的材 料,因为这里不仅是样品的分辨率、还需要有精确的 定年手段和替代性指标.为取得更早、更长的记录, 特别重要的是建立古老地质年代的高分辨率剖面. 近年来岩芯和井壁扫描技术的发展,和越来越多元 素的同位素分析,都是建立高分辨率古代记录的支 撑.

对于更多的地球科学工作者来说,现代过程的时间序列更为直接.前面说过(见 3.2.1),现代过程的连续观测起步很晚、又长期不受重视,因此长时间序列的观测记录相当稀少,最老的器测气象记录只有350年^[148]."临渊羡鱼,不如退而结网",唯一的办法是加紧设置观测网,系统收集相应数据.近年来,各种大气、海洋和陆地的观测台网纷纷建立,2005年又开始建设全球综合地球观测系统(GEOSS),是地球科学从零星的"调查"转入系统观测的重要转折.特别是原地实时观测系统,既能录取长期记录、又能及时报告数据,是防灾减灾的福音.比如地震的实时监测,就有可能将地震预警变为现实^[149].

需要强调的是极端环境的观测,比如深海和极 地,而特别值得重视的是海底联网观测系统的建设. 这种布设在海底的观测网,用电缆和光纤供应能量、 收集信息,连续多年进行自动化观测,随时提供实时 观测信息.人类历来在海洋之外对海洋作短暂的观 测,海底观测网使人类"常驻"深海海底,把实验室设 在海底,对大洋系统的物理、化学、生物和地质过程 作实时的原位观测^[150],甚至在海底钻孔里设置仪器, 观测"海底下面的海洋"与"深部生物圈"^[151].这是继 地面/洋面和空间之后,人类观测地球系统的第三个 平台,也是改变人类与海洋的关系的根本性举措^[152]. 由于地质记录里不能解释的众多现象,产生在与今 天深海海底相似的环境中,深海海底的长期观测,对 于解释地球系统的古老过程必将产生重大影响.

4.2.2 跨越时间尺度的思想方法

地球系统科学的发展得益于技术的进步,比如 空间覆盖有遥感,时间覆盖有观测技术,但两者都要 依靠人脑才能成为科学.不同尺度过程的系统整合, 一方面依靠实际资料做基础,另方面必需依靠数值 模拟形成系统.这里首先遇到的就是共同语言问题, 需要现代过程与古代记录的研究者之间, 在数据生 产者与数值模拟者之间,找到都能理解和使用的共 同语言. 生态学的 biome (生物群区)与 functional group (功能群)就是成功的例子, 这不是从生物分类 出发, 而是从生物与环境交换的物流与能量流出发 形成的概念,能够将现代或者古代生物研究的结果, 用于气候变化、碳循环等的数值模拟,无论在陆地或 者在海洋里都有很好的结果[153]. 然后就是实际观测 资料和计算机模拟的结合.实际资料永远不可能占 满全部的时间尺度, 地球过程的运行机制也不会直 观地得出,这就是数值模拟的重要性.最近用海气同 步耦合环流模式研究冰期后的气候变化揭示了 Bøolling-Allerød 暖期的成因^[154],就是模拟与资料结 合的成功实例.

依靠人脑的关键,在于跨尺度分析的能力.需要 从原来本学科的局限性里走出来,进入多尺度的时 空世界,换一种思维方式.前面说到波浪、漩涡和洋 流,代表了不同时空尺度的海洋现象,现在需要探讨 的是他们之间的相互影响.不同尺度之间的关系,是 个崭新的题目,各个领域里普遍存在.古气候里千年 尺度的温度变化,最大的变幅与频率既不在盛冰期、 也不在间冰期,而出现在氧同位素 3 期,冰盖不大不 小、也就是最不稳定的时期.同样的道理,磁场强大 的时候磁极稳定,磁场弱的时候磁极容易变动,因此 千年尺度的磁极偏移,也就出现在磁场强度最弱的 时候(图 4)^[14].如此看来,当一种过程处于稳定状态 (mode)时,次一级尺度的变化受到压制;当上一级尺 度不稳定时,次一级变化就会加强.这种认识有多大 的普遍性有待查证,但尺度间相互关系的研究,肯定 是非常值得注意的新方向.

同样,相似过程为什么呈现不同尺度的周期,又 是一个有趣的命题.有的比较直观,比如海水氧、碳 同位素的周期变化,4万年、10万年的冰期旋回,以 氧同位素的反应最强,而 40万年的偏心率长周期, 以碳同位素的表现最为清晰.这里的原因在于海水 里氧的滞留时间短,碳的滞留时间长达十几万年^[155]. 有时候不同尺度的周期具有不同的成因.海洋碳酸 盐周期的根子在于海水化学,10⁴~10⁵年轨道尺度的 变化主要由阴离子 CO₃²⁻引起,与气候变化直接联系, 但 10⁸年尺度的主要受阳离子(Mg/Ca 比值)控制,与 大洋中脊的扩张速率相关^[156].

地球系统中跨越圈层的过程,在时间尺度上的 关系比较复杂.冰盖融化和地壳反弹属于不同时间 尺度的现象,其实也就是水圈与岩石圈过程的差异. 同一个水分子,在不同圈层中的滞留时间极为悬殊. 河流里水的滞留时间为 10⁻²~10⁻¹年,在大气圈里只 有几天(10⁻²年),而在深层的地下水可达 10⁴年,作为 冰在极地冰盖可达 10⁴~10⁵年,一旦随板块俯冲进入 地球深处,在地幔里的滞留时间就会以亿年计(10⁸ 年).碳在地球表面的气圈、水圈和生物圈里的滞留时 间一般在 10⁰~10¹年^[157],但在海洋沉积中就要高出三 个量级,长达 10 余万年(10⁵年),至于从风化作用到 变质作用的地质循环里,碳的滞留时间长达 10⁷年以 上^[158].这正是气球系统复杂性的原因之一.

所以说,地球系统的多尺度问题,是在时间和空间里同时出现的.科学发展的历史表明,一个复杂系统的认识,往往从某个地点或者某个时间尺度上先行突破,然后才认识其多尺度结构.比如冰期旋回的轨道周期,米兰科维奇当年首先从北纬 65°的夏季太阳辐射量着手计算,发现由此引起的温度变化能够周期性地产生冰期.正因为抓住了这个"牛鼻子",才能提出气候变化的轨道驱动假说,才实现了古气候定量研究的突破.但是后来的研究,发现这 65°N 的夏季辐射量,无论在空间和时间上都不足以解释气候变化的记录.阳光普照大地,不仅北半球高纬区,

其实南极区和热带低纬区的太阳辐射量的变化,也 是气候变化的重要因素.地球轨道变化驱动的气候 周期,主要靠的是2万年的岁差和4万年的斜率变化. 由于南、北半球岁差周期的相位相反、互相抵消,才 使得冰盖消长的记录以 4 万年的斜率周期为主^[159]. 此外,决定北极冰盖消长的也不只是最高温度或者 平均温度,夏季也就是融冰季节的时间长度对于冰 盖的消长也至关重要,而这长度又取决于斜率周 期^[160],正是这些因素突出了斜率周期在冰期旋回中 的重要性^[161].至于低纬地区太阳辐射量的变化,主 要表现为对季风和信风气候的影响,因此热带辐射 量变化的2万年岁差周期,在季风降雨和信风带生产 力纪录中最为明显^[102].

迄今为止, 地球系统科学取得的巨大进展来自 跨越圈层的多学科研究, 主要属于空间的跨越; 下一 阶段进一步的发展,要求实现在时间尺度上的跨越. 科学家不见得能够"博古通今",但是需要有跨越时间 尺度的意识.我们看到,国际学术界出现了一批以探 索机理为宗旨、不顾古今时间界限的地球科学家,已 经取得了耀眼的辉煌成果. 且不说在研究古季风与 轨道周期方面, 早已做出了开创性贡献的大气科学 家 John Kutzbach、Andre Berger 和他们的合作者与弟 子,近来有些立足现代地球科学的专家,对于古代过 程的研究从基本原理上提出了创新的思路与批评. 物理海洋学家 Carl Wunsch 从物理学的角度,提出了 对古海洋学的一系列新认识, 其中包括对大洋温盐 环流"大洋传送带"的质疑和对气候演变中时间尺度 连续性的观点. 生物学家 Paul Falkowski 从海洋浮游 植物入手,研究生物和环境关系及其演化,最近五年 里仅 Science 和 Nature 就发表文章 11 篇. 大气科学家 Ray Pierrehumbert 在研究当前气候变化的同时,也 探讨"雪球地球"时期的气候; Peter Webster 讨论现代 季风与水文循环的时候,将内行星大气圈的演化进 行比较……. 可喜的是, 我国地学界已经在摆脱时间 尺度的束缚,开始探讨全球性问题,例如大气科学界 对于全球地理变化气候影响的研究[162].相信穿越时 间尺度研究之花, 必将在我国盛开并结成硕果.

4.2.3 跨越时间尺度的研究计划

环顾当前国际研究趋势,一种是全球化的选题,

利用数据库和网上交流探讨全球性问题;一种是在 观测资料和数值模拟的基础上进行机理的探索.近 年来的文献中,"工厂"、"引擎"、"机器"之类的关键 词频频出现,正是机理探索的反映.板块活动中早已 使用"俯冲工厂(subduction factory)"标志俯冲带的物 流机制^[163],沉积学里也提出了"碳酸盐工厂 (carbonate factories)"探讨碳酸盐的各种成因机制^[156], 细胞演化在讨论输入蛋白质的"分子机器(molecular machines)"^[164],极地环境在谈论"降尘机器(dust machine)"^[165],最近提出驱动地球上生物地球化学循 环的有"微生物引擎(microbial engines)"^[166]等等,其 共同点都是在探求机理,与我国的研究计划不大相 同.

以探索机理为目标的研究计划,常常需要跨越 时间和空间的尺度,这里可以举沉积学研究为例加 以说明. 沉积作用的研究, 既可以在单个剖面上作地 层学研究,也可以从河流上游山区到深海盆地看成 一个系统来研究,这样"从源到汇"研究沉积作用,构 成一个空间系统. 但是这种空间系统里至少包含两 个时间尺度上的整合: 一个是在正在发生的物质运 移,其中包括物理、化学和生物过程的整合,属于现 代沉积学;另一个是时空大尺度、地质学的整合,这 就是"层序地层学". 这两者的研究方法和学科并不相 同, 20 世纪 90 年代美国的 STRATOFORM 计划, 就 是把现代沉积学、地层学和数值模拟的专家组织到一 起,利用短期沉积过程(<100年)的研究,去求取长期 地层纪录(104~106年)的解释.时间尺度上采用大跨 度的方法,从秒级的波浪周期,到 107年的地层周期, 从海底观测的三脚架和沉积捕集器,到多道地震和 大洋钻探, 两类时间尺度间的缺口, 依靠计算机模拟 解决[167]. 这种现代过程与地层记录的整合, 就像当 年将古埃及和古希腊文字连接起来的罗赛塔石碑 (Rosetta Stone) 一样, 在现代沉积学和层序地层学之 间架筑桥梁[168].

跨越古今的另一种途径是将极端环境现代过程的研究,和地球演化的早期过程相结合.太古代的地球系统与今天截然不同,但是在古老的陆地地层中保存了太古代的环境记录,在深海的海底热液区还有与太古代相似的环境存在.日本在 2000 年起开展了 5 年为期的"太古代公园(Archaean Park)"计划,通

过在洋中脊的钻探和观测,研究热液区深部生物圈 和环境的关系,探索太古代生命起源的环境等问 题^[169].欧洲基金会从 2005 年起开展"太古代环境 (ArchEnviron)"研究计划,通过对西澳、南非和加拿大 太古代地层的分析及与现代深海热液区的比较,采 用分子生物学的方法,对于地球形成初期 20 亿年的 大气、海洋、地壳与生命进行探索.

我国的科技投入近年来有显著的增长,但是比 较缺乏在战略上具有开拓性的大型计划.在地球系 统科学框架下,如何组织跨时间尺度、跨学科界线, 能有重要国际影响的重大计划,应当是决策层认真 考虑的问题.

5 结束语

以上用长篇大论讨论地球系统时空的多尺度性, 目的是说明圈层相互作用不仅在于物质和能量流的 空间组合,还有着不同过程在时间尺度上的复杂关 系,随着地球系统运行机制探索的深入,时间尺度上 的问题将会变得更加突出.我们研究的地球系统里, 既有宇宙大爆炸留下 136 亿年前的残余微波^[170], 又 有每10分钟繁殖一次的海洋细菌[132], 是一个极为复 杂的系统. 沟通不同尺度的"时间隧道", 恐怕需要几 代人的的努力才能"穿凿"打通. 我们以前说过,"地球 系统过于复杂,不大可能用牛顿定律或者门德列也 夫周期表这样简明的基础理论加以概括, 但是必然 会有地球系统运行、演变的自身规律"[142].随着全球 性数据和高分辨率技术的出现,揭穿这种规律的时 机正在成熟. 如果说几个世纪以来中国对全球性科 学进展缺乏重大贡献, 使我们深感愧疚, 那么现在研 究条件空前改善的条件下,炎黄子孙们应当有参与 "问鼎"的雄心.

可以推断,地球系统运行机制下一步的突破口, 在于时间尺度上的穿越.一、二十年来,地球圈层相 互作用的研究取得了划时代性的进展,但是时间尺 度上还是围绕人类社会的"需求"而比较局限.现在, 对于空间关系的研究远远超过时间尺度上的进展, 这里有资助系统的倾向,也有学科分工历史原因的 影响.总的说,科技在时间域里的进展不如空间,但 只有克服不同时间尺度的障碍,才能理解不同圈层 在空间里的结合.也就是说,只有既能跨越空间、又

能跨越时间的研究者,才有可能解开地球系统运行规 律之谜.这种学术上的突破,不仅将为环境预测提供 科学依据,也将使矿产资源勘探的理论进入新时期.

今天的地球科学,已经很少有不涉及学科交叉 的领域^[171].但是我国至今没有欧美那种地球科学交 叉的大型会议,学科交叉往往被误会为多学科联合 拿项目、出文集,严重缺乏相互渗透、相互理解的过 程.我国从事现代过程研究的科学家和研究地质历 史过程的科学家,分别都取得了世人瞩目的成果,但 是极少在国内进行跨越时间尺度的交流、合作.从我 国的自然条件、地球科学队伍以至东方思维的特色来 看,地球系统科学中取得突破性进展只是时间问题. 当前各科技部门都在研讨战略、制定规划,建议充分 重视地球科学时间尺度上的跨越,争取以新的思路 推进学科发展,迎接进入创新型国家行列的 2020 年 的到来.

致谢 文稿的准备,得益于孙湘君、李春峰、田军、黄维和李建如的建议和帮助,审稿人提出修改建议,特 此一并致谢.

参考文献_

- 1 Press F. Earth science and society. Nature, 2008, 451: 301-303
- 2 Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 1998, 281: 237-240
- 3 Milliman J D, Meade R H. World-wide delivery of river sediment to the Ocean. J Geol, 1983, 91: 1-21
- 4 Milliman J D, Syvitski J P M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J Geol, 1992, 100: 525-544
- 5 Syvitski J P M, Milliman J D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J Geol, 2007, 115: 1—19
- 6 Trenberth K E. Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim Change, 1999, 42: 327—339
- 7 Huntington T G. Evidence for intensification of the global water cycle: review and synthesis. J Hydrol, 2006, 319: 83-95
- 8 Wang B, Ding Q. Changes in global monsoon precipitation over the past 56 years. Geophys Res Lett, 2006, 33: L06711, doi: 10.1029/2005GL025347
- 9 Milliman J D, Farnsworth K L, Jones P D, et al. Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951 -2000. Glob Planet Change, 2008, 62: 187—194
- 10 Mann M E, Bradley R S. Northern hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Paleoceanography, 1999, 26: 759—762
- 11 Lisiecki L E, Raymo M E. A Plio-Pleistocene stack of 57 globally distributed benthic δ^{8} O records. Paleoceanography, 2005, 20: PA1003
- 12 Zachos J S, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 2001, 292: 686-693
- 13 Allen P A. From landscapes into geological history. Nature, 2008, 451: 274-276
- 15 Wunsch C. Moon, tides and climate. Nature, 2000, 405: 743-744
- 16 Immel T J, Sagawa E, England S L, et al. Control of equatorial ionospheric morphology by atmospheric tides. Geophys Res Lett, 2006, 33: L15108, doi: 10.1029/2006GL026161
- 17 Agnew D C. Earth tides. In: Herring T, ed. Treatise on Geophysics, vol.3, Geodesy. New York: Elsevier, 2007. 163-195
- 18 Winter T C. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol J, 1999, 7: 28-45
- 19 Por F D. Anchialine pools comparative hydrology. In: Friedman G M, Krumbein W E, eds. Hypersaline Ecosystems, the Gavish Sabkha. Ecol Stud, 1985, 53: 136—144
- 20 张光辉, 聂振龙, 张翠云, 等. 黑河流域走廊平原地下水补给变异特征与机制. 水利学报, 2005, 36(6): 1-8
- 21 覃小群, 蒋忠诚, 李庆松, 等. 广西岩溶区地下河分布特征与开发利用. 水文地质工程地质, 2007, 34(6): 10-13

- 22 Abrams D M, Lobkovsky A E, Petroff A P, et al. Growth laws for channel networks incised by groundwater flow. Nature Geosci, 2009, 2: 193—196
- 23 Howard A D. Forming valleys from below. Nature Geosci, 2009, 2: 165-166
- 24 Lamb M P, Howard A D, Johnson J, et al. Can springs cut canyons into rock? J Geophys Res, 2006, 111: E07002, doi: 10.1029/2005JE002663
- 25 Blankenship D D, Young D A, Carter S P. The Distribution of Antarctic Subglacial Lake Environments with Implications for their Origin and Evolution. Subglacial Antarctic Lake Environments (SALE) 2006 Workshop Web site. http://salepo.tamu.edu/saleworkshop2006
- 26 Bell R E, Studinger M, Tikku A A, et al. Origin and fate of Lake Vostok water refrozen to the base of the East Antarctic ice sheet. Nature, 2002, 416: 307—310
- 27 Clarke G K C. Ice-sheet plumbing in Antarctica. Nature, 2006, 440: 1000-1001
- 28 Wingham D J, Siegert M J, Shepherd A P, et al. Rapid discharge connects Antarctic subglacial lakes. Nature, 2006, 440: 1033–1036
- 29 Alley R B, Fahnestock M, Joughin I. Understanding glacier flow in changing times. Science, 2008, 322: 1061-1062
- 30 Lewis A R, Marchant D R, Kowalewski D E. The age and origin of the Labyrinth, western Dry Valleys, Antarctica: evidence for extensive middle Miocene subglacial floods and freshwater discharge to the Southern Ocean. Geology, 2006, 34(7): 513-516
- 31 Corliss J B, Dymond J, Gordon L I, et al. Submarine thermal springs on the Galápagos Rift. Science, 1979, 203: 1073-1083
- 32 Kelley D S, Baross J A, Delaney J R. Volcanoes, fluids, and life at midocean ridge spreading centers. Annl Rev Earth Planet Sci, 2002, 30: 385—491
- 33 Herzig P M, Hannington M D. Input from the deep: hot vents and cold seeps. In: Schulz H D, Zabel M, eds. Marine Geochemistry. 2nd ed. Berlin: Springer, 2006. 457—479
- 34 Kelley D S, Karson J A, Blackmann D K, et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature, 2000, 412: 145—149
- 35 Kelley D S, Karson J A, Früh-Green G L, et al. A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science, 2005, 307: 1428–1434
- 36 Suess E, Borhmann G, von Heune R, et al. Fluid venting in the eastern Aleutian subduction zone. J Geophys Res, 1998, 103: 2597–2614
- 37 Han X Q, Suess E, Huang Y Y, et al. Jiulong methane reef: microbial mediation of seep carbonates in the South China Sea. Mar Geol, 2008, 249: 243—256
- 38 Kopf A. Global methane emission through mud volcanoes and its past and present impact on the Earth's climate. Int J Earth Sci, 2003, 92: 806—816
- 39 Hovland M, Risk M. Do Norwegian deep-water coral reefs rely on seeping fluids? Mar Geol, 2003, 198: 83-96
- 40 Wunsch C. What is the thermohaline circulation? Science, 2002, 298: 1179-1180
- 41 Bower A S, Lozier M S, Gary S F, et al. Interior pathways of the North Atlantic meridional overturning circulation. Nature, 2009, 459: 243—248
- 42 Egbert G D, Ray R D. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 2000, 405: 775-778
- 43 Wunsch C. The past and future ocean circulation from a contemporary perspective. In: Schmittner A, Chiang J, Hemmings S, eds. Ocean Circulation: Mechanisms and Impacts. Geophys Monograph, 2007, 173: 53—74
- 44 Garrett C. Internal tides and ocean mixing. Science, 2003, 301: 1858–1859
- 45 Hilton D R. The leaking mantle. Science, 2007, 318: 1389-1390
- 46 Walker R J, Morgan J W, Horan M F. Osmium-187 enrichment in some plumes: evidence for core-mantle interaction. Science, 1995, 269: 819-822
- 47 Larsen H C, Cannat M, Ceuleneer G, et al. Oceanic Crustal Structure and Formation. IODP and ODP Achievements November 2002—December 2005. IODP-Mi, Sapporo, 2009. 1—65
- 48 郑永飞, 吴福元. 克拉通岩石圈的生长和再造. 科学通报, 2009, 54(14): 1945-1949
- 49 Molnar P, England P. Late Cenozoic uplift of mountain ranges and global climatic change: chicken or egg? Nature, 1990, 346: 29-34
- 50 Romanowicz B. Using seismic waves to image Earth's internal structure. Nature, 2008, 451: 266-268
- 51 Zheng Y F, Fu B, Gong B, et al. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu Orogen in China: implications for geodynamics and fluid regime. Earth Sci Rev, 2003, 62: 105—161
- 52 Stevenson D J. A planetary perspective on the deep Earth. Nature, 2008, 451: 261-265

- 53 Ernst W G. The Earth's place in the Solar system. In: Eanst W G, ed. Earth System: Processes and Issues. Cambridge: Cambridge University Press, 2000. 45–58
- 54 Faure G, Mensing T M. Introduction to Planetary Science: The Geological Perspective. Dordrecht: Springer, 2007. 1-526
- 55 Lovelock J E. Geophysiology—the science of Gaia. In: Schneider S H, Boston P J, eds. Scientists on Gaia. Cambridge: MIT Press, 1991. 3—10
- 56 Forget F, Costard F, Lognonné P. Planet Mars: Story of Another World. Chichester: Springer and Praxis, 2008. 1–229
- 57 Baker V R. Water and the martian landscape. Nature, 2001, 412: 228-236
- 58 Malin M C, Edgett K S. Sedimentary rocks of Early Mars. Science, 2000, 290: 1927–1937
- 59 Davis W L, McKay C P. Origin of life: a comparison of theories and application to Mars. Origins Life Evol Biosphere, 1996, 26: 61-73
- 60 Webster P J. The low-latitude circulation of Mars. Icarus, 1977, 30: 626-649
- 61 Laskar J, Levrard B, Mustard J F. Orbital forcing of the martian polar layered deposits. Nature, 2002, 419: 375-377
- 62 Bullock M A, Grinspoon D H. Climate change as a regulator of Tectonics on Venus. Science, 1999, 286: 87-90
- 63 Reuter D C, Simon-Miller A A, Lunsford A, et al. Jupiter cloud composition, stratification, convection, and wave motion: a view from New Horizons. Science, 2007, 318: 223–225
- 64 Pappalardo R T, Belton M J S, Breneman H H, et al. Does Europa have a subsurface ocean? Evaluation of the geological evidence. J Geophys Res, 1999, 104(E10): 24015—24055
- 65 Kargel J S, Kaye J Z, Head J W III, et al. Europa's crust and ocean: origin, composition, and the prospectus for life. Icarus, 2000, 148: 226–265
- 66 Svensmark H. Cosmoclimatology: a new theory emerges. Astron Geophys, 2007, 48(1): 18-24
- 67 Hochella M F Jr. There's plenty of room at the bottom: nanoscience in geochemistry. Geochim Cosmochim Acta, 2002, 66: 735-743
- 68 Madden A S, Hochella M F Jr. A test of geochemical reactivity as a function of mineral size: manganese oxidation promoted by hematite nanoparticles. Geochim Cosmochim Acta, 2005, 69: 389—398
- 69 Bergquist B A, Wu J, Boyle E A. Variability in oceanic dissolved iron is dominated by the colloidal fraction. Geochim Cosmochim Acta, 2007, 71: 2960—2974
- 70 Hochella M F Jr, Lower S K, Maurice P A, et al. Nanominerals, mineral nanoparticles, and Earth systems. Science, 2008, 319: 1631– 1635
- 71 Raiswell R, Tranter M, Benning L G, et al. Contributions from glacially derived sediment to the global iron (oxyhydr) oxide cycle: implications for iron delivery to the oceans. Geochim Cosmochim Acta, 2006, 70: 2765—2780
- 72 Karl D M. Microbial oceanography: paradigms, processes and promise. Nature Rev Microbiol, 2007, 5(10): 759-769
- 73 Azum F, Malfatti F. Microbial structuring of marine ecosystems. Nature Rev Microbiol, 2007, 5(10): 782-791
- 74 Suttle C A. Marine viruses—major players in the global ecosystem. Nature Rev Microbiol, 2007, 5(10): 801—812
- 75 Jørgensen B B, D'Hondt S. A starving majority deep beneath the seafloor. Science, 2006, 314: 932–934
- 76 Whitman W B, Coleman D C, Wiebe W J. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA, 1998, 95: 6578-6583
- 77 焦念志,等.海洋微型生物生态学.北京:科学出版社,2006.1-525
- 78 Jiao N, Zhang Y, Zeng Y, et al. Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ Microbiol, 2007, 9: 3091—3099
- 79 Danovaro R, Dell'Anno A, Corinaldesi C, et al. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature, 2008, 454: 1084—1087
- 80 Ledford H. Death and life beneath the sea floor. Nature, 2008, 454: 1038
- 81 Azum F, Malfatti F. Microbial structuring of marine ecosystems. Nature Rev Microbiol, 2007, 5: 782-791
- 82 Kukal Z. The rate of geological processes. Earth-Sci Rev, 1990, 28: 5-284
- 83 Nield T. A tribe of jobbing ditchers. Nature, 2008, 451: 258-260
- 84 Keeling C D. The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus, 1960, 12: 200-203
- 85 Field J G, Hempel G, Summerhayes C P. Oceans 2020. Science, Trends, and the Challenge of Sustainability. Washington DC: Island Press, 2002. 1—365
- 86 Honjo S, Manganini S J, Cole J J. Sedimentation of biogenic matter in the deep ocean. Deep-Sea Res A, 1982, 29: 609-625
- 87 Hollister C D, Nowell A R M. Prologue: abyssal storms as a global geologic process. Mar Geol, 1991, 99: 275-280
- 88 Yu S B, Kuo L C. Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics, 2001, 333: 199–217
- 89 Jin S G, Park P H, Zhu W Y. Micro-plate tectonics and kinematics in Northeast Asia inferred from a dense set of GPS observations. Earth Planet Sci Lett, 2007, 257(3-4): 486—496

- 90 Snow J E, Edmonds H N. Ultraslow-spreading ridges, rapid paradigm changes. Oceanography, 2007, 20(1): 90-101
- 91 Rogers G, Dragert H. Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip. Science, 2003, 300: 1942–1943
- 92 Schwartz S Y, Rokosky J M. Slow slip events and seismic tremor at circum-Pacific subduction zones. Rev Geophys, 2007, 45: 1—32
- 93 Haflidason H, Sejrup H P, Nygard A, et al. The Storegga slide: architecture, geometry and slide development. Mar Geol, 2004, 213: 201 --234
- 94 Masson D, Harbitz C B, Wynn R B, et al. Submarine landslides: processes, triggers and hazard prediction. Phil Trans R Soc A, 2006, 364: 2009–2039
- 95 Zhang Y, Kling G. Dynamics of lake eruptions and possible ocean eruptions. Annu Rev Earth Planet Sci, 2006, 34: 293-324
- 96 Pope K O, D'Hondt S L, Marshall C R. Meteorite impact and the mass extinction of species at the Cretaceous/Tertiary boundary. Proc Natl Acad Sci USA, 1998, 95: 11028—11029
- 97 Zachos J C, Röhl U, Schellenberg S A, et al. Rapid acidification of the ocean during the Paleocene-Eocene Thermal Maximum. Science, 2005, 308: 1611—1615
- 98 Peteet D M. Younger Dryas. In: Gornitz V, ed. Encyclopedia of Paleoclimatology and Ancient Environments. Berlin, Heidelberg, New York: Springer, 2009. 993—996
- 99 Thomas E R, Wolff E W, Mulvaney R, et al. The 8.2 ka event from Greenland ice cores. Quat Sci Rev, 2007, 26: 70-81
- 100 Kleiven H F, Kissel C, Laj C, et al. Reduced North Atlantic Deep Water coeval with the Glacial Lake Agassiz freshwater outburst. Science, 2008, 319: 60—64
- 101 Kennett D J, Kennett J P, West A, et al. Nanodiamonds in the Younger Dryas boundary sediment layer. Science, 2009, 323: 94
- 102 Ruddiman W F. Earth's Climate. Past and Future. New York: W. H. Freeman and Company, 2001. 1-465
- 103 Ogg J G, Smith A G. The geomagnetic polarity time scale. In: Gradstein F, Ogg J, Smith A, eds. A Geological Time Scale 2004. Cambridge: Cambridge University Press, 2004. 63—86
- 104 Algeo T J. Geomagnetic polarity bias patterns through the Phanerozoic. J Geophys Res, 1996, 101: 2785-2814
- 105 Laj C, Channell J E T. Geomagnetic excursions. In: Kono M, ed. Treatise on Geophysics, vol.5, Geomagnetism. Amsterdam: Elsevier, 2007. 373—416
- 106 Ferrell J W, Prell W. Climate change and CaCO₃ preservation: an 800000 year bathymetric reconstruction from the central equatorial Pacific Ocean. Paleoceanography, 1989, 4: 447—466
- 107 Diester-Haass L, Meyers P A, Bickert T. Carbonate crash and biogenic bloom in the late Miocene: evidence from ODP Sites 1085, 1086, and 1087 in the Cape Basin, southeast Atlantic Ocean. Paleoceanography, 2004, 19: PA1007, doi: 10.1029/2003PA000933
- 108 Dickson J A D. Echinoderm skeletal preservation: calcite-aragonite seas and the Mg/Ca ratio of Phanerozoic oceans. J Sediment Res, 2004, 74: 355-365
- 109 王鸿祯. 地球的节律与大陆动力学的思考. 地学前缘, 1997, 4(3-4): 1-12
- 110 Lambeck K, Chappell J. Sea level change through the last glacial cycle. Science, 2001, 292: 679-686
- 111 Davis A C, Bickle M J, Teagle D A H. Imbalance in the oceanic strontium budget. Earth Planet Sci Lett, 2003, 211: 173-187
- 112 Vance D, Teagle D A H, Foster G L. Variable Quaternary chemical weathering fluxes and imbalances in marine geochemical budgets. Nature, 2009, 458: 493—496
- 113 Derry L A. A glacial hangover. Nature, 2009, 458: 417-418
- 114 Karl T R, Trenberth K E. Modern global climate change. Science, 2003, 302: 1719-1723
- 115 Imbrie J, Boyle E A, Clemens S C, et al. On the structure and origin of major glaciation cycles. 1. Linear responses to Milankovitch forcing. Paleoceanography, 1992, 7: 701-738
- 116 Harris R N, Chapman D S. Borehole temperatures and a baseline for 20th-century global warming estimates. Science, 1997, 275: 1618— 1621
- 117 Fleming G R, Ratner M A. Grand challenges in basic energy sciences. Physics Today, 2008, 28-33
- 118 Miralda-Escudé J. The Dark Age of the Universe. Science, 2003, 300: 1904-1909
- 119 Zinner E. An isotopic view of the early Solar system. Science, 2003, 300: 265-267
- 120 Amelin Y, Krot A N, Hutcheon I D, et al. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science, 2002, 297: 1678—1683
- 121 Jacobsen S B. How old is planet Earth? Science, 2003, 300: 1513-1514
- 122 Wilde S A, Valley J W, Peck W H, et al. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 2001, 409: 175—178

- 123 Wood B J, Walter M J, Wade J. Accretion of the Earth and segregation of its core. Nature, 2006, 441: 825-833
- 124 Nisbet E G. Of clicks and rocks—the four aeons of Earth. Episodes, 1991, 14(4): 327—330
- 125 Bleeker W. Toward a "natural" Precambrian time scale. In: Gradstein F M, Ogg J G, Smith A G, eds. A Geologic Time Scale 2004. Cambridge: Cambridge University Press, 2004. 141—146
- 126 Canup R M, Asphaug E. Origin of the moon in a giant impact near the end of the Earth's formation. Nature, 2001, 412: 708-712
- 127 Kerr R A. A trace of the earliest plate tectonics turns up in Greenland. Science, 2007, 315: 1650-1651
- 128 Kump L P. The rise of atmospheric oxygen. Nature, 2008, 451: 277-278
- 129 Vreeland R H, Rosenzweig W D, Powers D W. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature, 2000, 407: 897—900
- 130 Parkes R J. Microbiology: a case of bacterial immortality? Nature, 2000, 407: 844-845
- 131 Krausz F, Ivanov M. Attosecond physics. Rev Mod Phys, 2009, 81: 163-234
- 132 Pomeroy L R, Williams P J, Azam F, et al. The microbial loop. Oceanography, 2007, 20(2): 28-33
- 133 Galperin Y I. Multiple scales in auroral plasmas. J Atmos Sol Terre Phys, 2002, 64: 211-229
- 134 Liu A T Y. Multiscale phenomena in the near-Earth magnetosphere. J Atmos Sol Terre Phys, 2002, 64: 125-143
- 135 Brantley S L. Understanding soil time. Science, 2008, 321: 1454-1455
- 136 Foster G L, Vance D. Negligible glacial-interglacial variation in continental chemical weathering rates. Nature, 2006, 444: 918-921
- 137 Vance D, Teagle D A H, Foster G L. Variable Quaternary chemical weathering fluxes and imbalances in marine geochemical budgets. Nature, 2009, 458: 493—496
- 138 Tian J, Zhao Q, Wang P, et al. Astronomically modulated Neogene sediment records from the South China Sea. Paleoceanography, 2008, 23: PA3210, doi: 10.1029/2007PA001552
- 139 Berger A, Loutre M F, Mélice J L. Equatorial insolation: from precession harmonics to eccentricity frequencies. Clim Past, 2006, 2: 131 —136
- 140 Wunsch C. The spectral description of climate change including the 100 ky energy. Clim Dyn, 2003, 20: 353-363
- 141 Huybers P, Curry W. Links between the annual, Milankovitch, and continuum of temperature variability. Nature, 2006, 441: 329-332
- 142 汪品先. 我国的地球科学向何处去? 地球科学进展, 2003, 18(6): 837-851
- 143 Green J L, Bohannan B J M, Whitaker R J. Microbial biogeography: from taxonomy to traits. Science, 2008, 320: 1039-1043
- 144 汪品先. 编制地球的"万年历". 自然杂志, 2006, 28 (1): 1-6
- 145 Chao B F. Concrete testimony to shifting latitude of the tropics. EOS, 1996, 77(44): 433
- 146 Valet J P. Time variations in geomagneticintensity. Rev Geophys, 2003, 41(1): 1-44
- 147 Hay W W, Flögel S, Söding E. Is the initiation of glaciation on Antarctica related to a change in the structure of the ocean? Glob Planet Change, 2005, 45: 23–33
- 148 Barker D J, Schmitt R W, Wunsch C. Endowments and new institutions for long-term observations. Oceanography, 2007, 20(4): 10-14
- 149 Kanamori H. Earthquake physics and real-time seismology. Nature, 2008, 451: 271-273
- 150 Fornari D. Realizing the dream of de Vinci and Verne. Oceanus, 2004, 42 (2): 125
- 151 Davis E E, Becker K. Observations of natural state fluid pressures and temperatures in young oceanic crust and inferences regarding hydrothermal circulation. Earth Planet Sci Lett, 2002, 204: 231–248
- 152 汪品先. 从海底观察地球——地球系统的第三个观测平台. 自然杂志, 2007, 29(3): 125—130
- 153 Hood R R, Laws E A, Armstrong R A, et al. Pelagic functional group modeling: progress, challenges and prospects. Deep Sea Res II, 2006, 53: 459—512
- 154 Liu Z, Otto-Bliesner B L, He F, et al. Transient simulation of Last Deglaciation with a new mechanism for Bølling-Allerød warming. Science, 2009, 325: 310—314
- 155 Wang P X, Tian J, Cheng X R, et al. Major Pleistocene stages in a carbon perspective: the South China Sea record and its global comparison. Paleoceanography, 2004, 19(4): PA4005
- 156 Pomar L, Hallock P. Carbonate factories: a conundrum in sedimentary geology. Earth Sci Rev, 2008, 87: 134-169
- 157 Houghton R A. Balancing the global carbon budget. Ann Rev Earth Planet Sci, 2007, 35: 313-347
- 158 Kump L R. Interpreting carbon-isotope excursions: strangelove oceans. Geology, 1991, 19: 299-302
- 159 Raymo M E, Lisiecki L, Nisancioglu K. Plio-Pleistocene ice volume, Antarctic climate, and the global δ^{18} O record. Science, 2006, 313: 492—495
- 160 Huybers P J. Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science, 2006, 313: 508-511
- 161 Raymo M E, Huybers P J. Unlocking the mysteries of the ice ages. Nature, 2008, 451: 284-285

- 162 Wu G X, Liu Y M. Summertime quadruplet heating pattern in the subtropics and the associated atmospheric circulation. Geophys Res Lett, 2003, 30: 1201, doi: 10.1029/2002GL016209
- 163 Tatsumi Y, Kogiso T. The subduction factory: its role in the evolution of the Earth's mantle. In: Frontier Research on Earth Evolution, vol.1. Geol Soc London Spec Publ, 2003, 219: 55—80
- 164 Dolezal D, Likic V, Tachezy J, et al. Evolution of the molecular machines for protein import into mitochondria. Science, 2006, 313: 314 —318
- 165 Ackert R P Jr. Patagonian dust machine. Nature Geosci, 2009, 2: 244-245
- 166 Falkowski P G, Fenchel T, Delong E F. The microbial engines that drive Earth's biogeochemical cycles. Science, 2008, 320: 1034– 1039
- 167 Nittrouer C A, Kravitz J H. STRATAFORM: A program to study the creation and interpretation of sedimentary strata on continental margin. Oceanography, 1996, 9(3): 146—152
- 168 Nittrouer C A, Austin J A, Field M E, et al. Writing a Rosetta stone: insights into continental-margin sedimentary processes and strata. In: Nittrouer C A, Austin J A, Field M E, et al. eds. Continental Margin Sedimentation: From Sediment Transport to Sequence Stratigraphy. Blackwell Publishing, 2007. 1—48
- 169 Ishibashi J I, Marumo K, Maruyama A, et al. Direct access to the sub-vent biosphere by shallow drilling. Oceanography, 2007, 20(1): 24 -25
- 170 Brandenberger R. A texture in the sky? Science, 2007, 318: 1560-1561
- 171 Powell T M. The rise of interdisciplinary oceanography. Oceanography, 2008, 21(3): 55-57